M1.(a) (i) the <u>minimum energy</u> required by an <u>electron</u> ✓ to escape from a (metal)<u>surface</u> ✓ *if refer to atom / ionisation zero marks*

 $6.63 \times 10^{-34} \times f = 5.15 \times 1.60 \times 10^{-19}$

 $6.63 \times 10^{-34} \quad \checkmark = 1.24 \times 10^{15} (Hz)$

(use of hf = eV)

5.15×1.60×10-19

(b)

f =

 the (minimum) energy to remove an electron(from an atom) ✓ from the ground state ✓

2

2

(c) (use of $hf = E_k + \Phi$) $\Phi = 2.28 \times 1.60 \times 10^{-19} = 3.648 \times 10^{-19} \text{ (J) } \checkmark$ $E_k = 5.15 \times 1.60 \times 10^{-19} - 3.648 \times 10^{-19} = 4.59 \times 10^{-19} \text{ J } \checkmark \checkmark$ 3 sig figsif clearly used 1.2×10^{15} then final answer must be to 2 sig. figs. for last mark to be awarded accept 4.57 in place of 4.59

if no working and 1.24×10^{15} (Hz) 1 mark

3

(d) (use of $c = f\lambda$) $\lambda = \frac{3.0 \times 10^8}{1.24 \times 10^{15}} = 2.42 \times 10^{-7} \checkmark$ $v = h / m\lambda = 6.63 \times 10^{-34} / (9.11 \times 10^{-31} \times 2.42 \times 10^{-7})$ $v = 3010 \text{ m s}^{-1} \checkmark \checkmark$ first mark minimum working – determination of wavelength bald answer gets 2 marks range to 3 sig figs 2900 – 3030

[12]

3

Any electrons ejected will only make the positive charge greater. ✓

1

1

(b) The mark scheme gives some guidance as to what statements are expected to be seen in a 1 or 2 mark (L1), 3 or 4 mark (L2) and 5 or 6 mark (L3) answer. Guidance provided in section 3.10 of the 'Mark Scheme Instructions' document should be used to assist in marking this question.

Mark	Criteria	QoWC
6	Both ideas fully analysed, with full discussion of alternatives.	The student presents relevant information coherently, employing structure, style and sp&g to render meaning clear. The text is legible.
5	Both ideas analysed with supporting discussion but without alternatives	
4	Both ideas analysed, with one dealt with satisfactorily and the other with some supporting discussion	The student presents relevant information and in a way which assists the communication of meaning. The text is legible. Sp&g are sufficiently accurate not to obscure meaning.
3	Both ideas analysed, with only one dealt with satisfactorily	
2	One idea analysed with some supporting discussion	The student presents some relevant information in a simple form. The text is usually legible. Sp&g allow meaning to be derived although errors are sometimes obstructive.
1	One idea analysed, with little supporting discussion	
0	Unsupported combination or no relevant analysis	The student's presentation, spelling, punctuation and grammar seriously obstruct

(c) Work function in joules = $1.6 \times 10^{-19} \times 4.3 = 6.9 \times 10^{-19} \text{ J}$ *The first mark is for converting the work function into J*

Use of hf = work function + KE_{max} The second mark is for substituting into the photoelectric equation

$$\begin{split} \mathrm{KE}_{\scriptscriptstyle\mathrm{max}} &= \mathrm{hf} - \mathrm{work} \ \mathrm{function} \\ &= (6.63 \times 10^{\text{-}34}) \times (1.2 \times 10^{\text{-}15}) + 6.9 \times 10^{\text{-}19} \checkmark \\ &= 7.9 \times 10^{\text{-}19} - 6.9 \times 10^{\text{-}19} \\ &= 1.0 \times 10^{\text{-}19} \ \mathrm{J} \checkmark \\ & The \ third \ mark \ is \ for \ the \ final \ answer \ Allow \ 1.1 \end{split}$$

1

6

1

1

Alternative

Reference to max ke corresponding to emission of surface electrons whilst electrons from deeper in the metal will be emitted with smaller ke

[12]

1

M3.D

[1]

[1]

M4.B

M5.C

[1]

M6.(a) energy of photon is constant / fixed OR energy given to electron is fixed ✓ energy required for electron to <u>leave / escape / emit</u> from the <u>surface / metal</u> OR electron has to overcome work function ✓ maximum kinetic energy is the energy of photon minus the work function ✓ deeper electrons require energy to get to the surface OR have less E_k than surface electrons ✓

mention of energy levels means can only score first mark photoelectric equation alternative for third mark if φ and hf defined

3 max

(b) (i) (use of E = hf) energy of photon = $6.63 \times 10^{-34} \times 3.0 \times 10^{15}$ \checkmark = 1.989×10^{-18} (J) work function = hf- $E_{k} = 1.989 \times 10^{-18} - 1.7 \times 10^{-18} = 2.89 \times 10^{-19}$ \checkmark work function = 2.89×10^{-19} / 1.6×10^{-19} \checkmark = (1.8 eV)hf gets first mark even if in wrong equation

(ii) work function = hf_0 $f_0 = 1.8 \times 1.6 \times 10^{-19} / 6.63 \times 10^{-34} = 4.3 \times 10^{14} = \sqrt{(\text{Hz})} \sqrt{2} \text{ sig figs}$ 2 sig . fig stand alone mark Accept 4.4 × 10¹⁴ 3 decrease the energy of (incident) photons ~ (c) (i) decrease the maximum kinetic energy of electrons </ OR decrease the energy of (incident) photons < hence fewer deeper electrons escape 🗸 OR below threshold frequency </ no electrons emitted 🗸 OR as energy of each photon decreases but intensity is constant (there are more photons / sec) 🗸 number of emitted electrons(/sec) must increase for last two alternatives must get first mark before can qualify for second mark 2

- (ii) increase in photons cause increase in (emitted) electrons 🗸 double number of electrons / photons OR reference to rate /per second ✓ if refer to energy levels / atoms can only award first mark

2

[13]

- **M7**.(a) Minimum energy to remove an electron
 - from a (metal) surface

B1

2

B1

Converts 2.28 (e V) to 3.6 × 10⁻¹⁹ (J) / 2.28 × 1.6 × 10⁻¹⁹ (b)

C1

Condone minus sign here on energy or

charge

Use of $hf = qp_0$

e.g. f = 2.28 / h (will need to see subject)

or $2.28 = 6.6(3) \times 10^{-34} \times f$ or f =

2.28 / 6.6(3) × 10⁻³⁴ (will need to see subject) Makes f <u>subject</u> or <u>substitutes</u> correctly for h and φ_o

C1

allow equivalent substitution into $hf = qp_0 + KE_{max}$ where KE = 0Penalise minus sign on answer

 $(f =) 5.5(0) \times 10^{14}$ (Hz) cao

A1

3