M1.(a) A combination of resistors in series connected across a voltage source (to produce a required pd) ✓

Reference to splitting (not dividing) pd

1

(b) When R increases, pd across R increases ✓

Pd across R + pd across T = supply pd ✓

So pd across T / voltmeter reading decreases ✓ Alternative:

$$R_1 \times V_{tot}$$

Use of $V = R_1 + R_2$

 V_{tot} and R_2 remain constant \checkmark

So V increases when R₁ increases ✓

3

(c) At higher temp, resistance of T is lower ✓

1

So circuit resistance is lower, so current / ammeter reading increases 🗸

1

(d) Resistance of T = 2500 Ω

Current through T = V / R = 3 / 2500 = 1.2 × 10⁻³ A \checkmark (Allow alternative using $V_z/R_z = V_z/R_z$)

pd across R = 12 - 3 = 9 V

The first mark is working out the current

1

Resistance of $R=V\ /\ I$ = 9 / 1.2 × 10 $^{\text{-}\text{\tiny 3}}$ = 7500 $\Omega \checkmark$

The second mark is for the final answer

1

(e) Connect the alarm across R instead of across T ✓ allow: use a thermistor with a ptc instead of ntc.

[9]

1

M2.B

[1]

M3.(a) (i) (use of I = V / R)

first mark for adding resistance values 90 k Ω

2

2

(b) resistance of LDR decreases ✓

need first mark before can qualify for second

reading increase because greater $\underline{\text{proportion / share}}$ of the voltage across R OR higher current \checkmark

2

(c) $I = 0.75 / 5000 = 1.5 \times 10^{-4} (A)$ (pd across LDR = 0.75 (V)) pd across variable resistor = 6.0 - 0.75 - 0.75 = 4.5 (V) \checkmark $R = 4.5 / 1.5 \times 10^{-4} = 30\ 000\ \Omega$ \checkmark or $I = 0.75 / 5000 = 1.5 \times 10^{-4}$ (A) \checkmark

$$R_{\text{total}}I = 6.0 / 1.5 \times 10^{-4} = 40\ 000\ \Omega$$
 \checkmark $R = 40\ 000\ - 5000\ - 5000\ = 30\ 000\ \Omega$ \checkmark

[9]

3

M4.(a) (i) **1/R** total = **1/(40)** \checkmark +1/(10+5) \checkmark = 0.09167 R total = 10.9 kΩ \checkmark

3

(ii) $I = 12 / 10.9 k = 1.1 mA \checkmark$

1

(b)

position	pd / V
AC	6.0 ✓
DF	4.0 ✓
CD	2.0 ✓

C.E. for CD

3

(c) (i) AC: no change ✓ constant pd across resistors / parallel branches(AE) ✓ no CE from first mark

2

(ii) DF: decreases ✓
as greater proportion of voltage across fixed / 10 k Ω resistor ✓
no CE from first mark

[11]

M5. (a) 1 jo	oule p	per coulomb (or equivalent)		
	allow watt per amp		B1	1
(b) ((i)	Use of potential divider formula allow 1 for 4.05 (V) or current of 2.25 (mA)	C1	
		4.95 (V)	A 1	2
1	(ii)	reduced current	В1	1
	(iii)	use of parallel resistor formula	C 1	
		leading to 1.72 ($k\Omega$) pd = 4.4 (V)	C1	
			A 1	3
(potential divider can provides sensitive control of current (from 0 - 1.1 mA)	B1	
		allow pot div can provide zero current and variable resistor gives larger current		
		variable resistor can provide larger current but cannot get near 0 A ow	rtte B1	
				² [9]

M6. (a) (i) (use of V = IR) $I = (12-8) / 60 \checkmark = 0.067 \text{ Or } 0.066(A) \checkmark$

(ii) (use of
$$V = IR$$
)
$$R = 8/0.067 = 120 (\Omega) \checkmark$$

(iii) (use of Q = It)
$$Q = 0.067 \times 120 = 8.0 \checkmark C \checkmark$$

reading will increase ✓
 resistance (of thermistor) decreases (as temperature increases) ✓
 current in circuit increase (so pd across R₁ increases) OR correct potential divider argument ✓

[8]