M1.(a) A combination of resistors in series connected across a voltage source (to produce a required pd) \checkmark

Reference to splitting (not dividing) pd
(b) When R increases, pd across R increases

Pd across R + pd across T = supply pd \checkmark
So pd across T / voltmeter reading decreases \checkmark
Alternative:
$R_{1} \times V_{\text {tot }}$
Use of $V=R_{1}+R_{2}$
$V_{\text {tot }}$ and R_{2} remain constant
So V increases when R, increases
(c) At higher temp, resistance of T is lower

So circuit resistance is lower, so current / ammeter reading increases \checkmark
(d) Resistance of $\mathrm{T}=2500 \Omega$

Current through $\mathrm{T}=\mathrm{V} / \mathrm{R}=3 / 2500=1.2 \times 10^{-3} \mathrm{~A} \checkmark$
(Allow alternative using $V_{1} / R_{I}=V_{2} / R_{2}$)
pd across $\mathrm{R}=12-3=9 \mathrm{~V}$
The first mark is working out the current

Resistance of $\mathrm{R}=\mathrm{V} / \mathrm{I}=9 / 1.2 \times 10^{-3}=7500 \Omega \checkmark$
The second mark is for the final answer
(e) Connect the alarm across R instead of across $\mathrm{T} \checkmark$
allow: use a thermistor with a ptc instead of ntc.

M2.B

M3.(a) (i) (use of $I=V / R$)
first mark for adding resistance values $90 \mathrm{k} \Omega$

$$
\begin{aligned}
\mathrm{I}=6.0 & /(50000+35000+5000) \quad \checkmark=6.7 \times 10^{-5} \mathrm{~A} \\
& \text { } \quad \text { ccept } 7 \times 10^{-5} \text { or dotted } 6 \times 10^{-5} \\
& \text { but not } 7.0 \times 10^{-5} \text { and not } 6.6 \times 10^{-5}
\end{aligned}
$$

(ii) $\quad V=6.7 \times 10^{-5} \times 5000 \quad \checkmark=0.33(0.33-0.35) V$ OR

$$
V=5 / 90 \times 6 \quad \checkmark=0.33(\mathrm{~V}) \checkmark
$$

CE from (i)
BALD answer full credit 0.3 OK and dotted 0.3
(b) resistance of LDR decreases
need first mark before can qualify for second
reading increase because greater proportion / share of the voltage across R OR higher current
(c) $\quad I=0.75 / 5000=1.5 \times 10^{-4}(\mathrm{~A})$
(pd across LDR $=0.75(\mathrm{~V})$)
pd across variable resistor $=6.0-0.75-0.75=4.5(\mathrm{~V}) ~ \checkmark$
$R=4.5 / 1.5 \times 10^{-4}=30000 \Omega$
or
$I=0.75 / 5000=1.5 \times 10^{-4}(\mathrm{~A})$

$$
\begin{aligned}
& R_{\text {ioal }}=6.0 / 1.5 \times 10^{-4}=40000 \Omega \\
& R=40000-5000-5000=30000 \Omega
\end{aligned}
$$

M4.(a) (i) $\quad 1 / R_{\text {toal }}=\mathbf{1 / (4 0)} \checkmark+1 /(10+5) \quad \checkmark=0.09167$
$R_{\text {tobal }}=10.9 \mathrm{k} \Omega \checkmark$
(ii) $\mathrm{I}=12 / 10.9 \mathrm{k}=1.1 \mathrm{~mA} \checkmark$
(b)

position	pd / V
AC	$6.0 \checkmark$
DF	$4.0 \checkmark$
CD	$2.0 \checkmark$

C.E. for $C D$
(c) (i) AC: no change \checkmark constant pd across resistors / parallel branches(AE) \checkmark no CE from first mark
(ii) DF: decreases \checkmark as greater proportion of voltage across fixed / $10 \mathrm{k} \Omega$ resistor \checkmark no CE from first mark

M5.(a) 1 joule per coulomb (or equivalent)
leading to $1.72(\mathrm{k} \Omega)$
C1
$\mathrm{pd}=4.4(\mathrm{~V})$
A1
(iv) potential divider can provides sensitive control of current (from 0-1.1 mA)

B1
allow pot div can provide zero current and variable resistor gives larger current variable resistor can provide larger current but cannot get near 0 A owtte

M6. (a) (i) (use of $V=I R)$

$$
I=(12-8) / 60 \checkmark=0.067 \text { Or } 0.066(\mathrm{~A}) \checkmark
$$

(ii) (use of $V=I R$)

$$
R=8 / 0.067=120(\Omega) \checkmark
$$

(iii) (use of $Q=I t)$

$$
\mathrm{Q}=0.067 \times 120=8.0 \checkmark \mathrm{C} \checkmark
$$

(b) reading will increase \checkmark
resistance (of thermistor) decreases (as temperature increases) \checkmark
current in circuit increase (so pd across R_{1} increases) OR correct potential divider argument \checkmark

