## M1.C

M2.(a) $t=\sqrt{\frac{2 s}{g}}$ or $4.5=\frac{1}{2} \times 9.81 \times t^{2}$,

$$
t=0.96 \mathrm{~s} \checkmark
$$

(b) Field strength $=186000 \mathrm{~V} \mathrm{~m}^{-1} \checkmark$

Acceleration $=E q / m$
or $186000 \times 1.2 \times 10^{-6} \checkmark$
$0.22 \mathrm{~m} \mathrm{~s}^{-2} \checkmark$
(c) $\quad 0.10(3) \mathrm{m}($ allow ecf from (i)) $\checkmark$
(d) Force on a particle $=m g$ and acceleration $=F / m$ so always $=g \checkmark$

Time to fall (given distance) depends (only) on the distance and acceleration $\checkmark$

OR:
$g=G M / r^{2} \checkmark$
Time to fall $=\sqrt{ } 2 \mathrm{~s} / \mathrm{g}$
so no $m$ in equations to determine time to fall $\checkmark$
(e) Mass is not constant since particle mass will vary $\checkmark$

Charge on a particle is not constant $\checkmark$
Acceleration $=E q / m$ or $(V / d)(q / m)$ or $V q / d m \swarrow$
$E$ or $V / d$ constant but charge and mass are 'random' variables so $q / m$ will vary (or unlikely to be the same) $\checkmark$

M3.(a) (i) use of $\left(s=\frac{1}{2} g t^{2}\right) \quad$ OR $\quad t^{2}=2 s / g \quad \checkmark$

$$
\begin{aligned}
& \mathrm{t}=\sqrt{\frac{2 \times 1.2}{9.81}} \checkmark \\
& =0.49(0.4946 \mathrm{~s}) \checkmark \text { allow } 0.5 \text { do not allow } 0.50 \\
& \\
& \begin{array}{l}
\text { Some working required for full marks. Correct answer only } \\
\text { gets 2 }
\end{array}
\end{aligned}
$$

(ii) $\quad(s=v t)$
$=8.5 \times 0.4946 \checkmark$ ecf ai
$=4.2 \mathrm{~m} \checkmark$ (4.20) ecf from ai
(b) (i) $\left(s=\frac{1}{2}(u+v) t\right)$

$$
\begin{aligned}
& t=\frac{2 s}{u(+v)} \text { or correct sub into equation above } \checkmark \\
& =\frac{2 \times 0.35}{8.5}=8.2 \times 10^{-2}(\mathrm{~s}) \checkmark(0.0824) \text { allow } 0.08 \text { but not } 0.080 \text { or } 0.1
\end{aligned}
$$

Allow alternative correct approaches
(ii) $a=(v-u) / t$ OR correct substitution OR $\mathrm{a}=103$ ( $=-8.5$ ) / $8.24 \times 10^{-2}=103.2$ ) $(F=m a=) 75 \times(103.2) \checkmark$ ecf from bi for incorrect acceleration due to
arithmetic error only, not a physics error (e.g. do not allow a = 8.5. Use of $g$ gets zero for the question.
$=7700 \mathrm{~N} \checkmark$ (7741) ecf (see above)
Or from loss of KE
Some working required for full marks. Correct answer only gets 2
[10]

M5.(a) thermionic emission / by heating
cathode heated / heating done by electric current / overcoming work function
B1
Must mention anode for third mark
anode which is positive wrt cathode / accelerated by electric field between anode and cathode
(b) (i) one relevant equation seen: $E=V / d / F=E e / a=F / m$

B1
Equation should be in symbols

$$
a=\frac{1.6 \times 10^{-19} \times 270}{9.1 \times 10^{-31} \times 0.015} / F=2.88 \times 10^{-15}
$$

## B1

Substitution may be done in several stages
$3.16 \times 10^{15}\left(\mathrm{~m} \mathrm{~s}^{-2}\right)$

Must be more than 2 sf
(ii) $\quad s=(u t)+a t^{2}$ or $v=u+a t$ and $s=v_{\mathrm{av}} \mathrm{OR} s=v t$ used

B1
Appropriate symbol equation seen and used for $1^{\text {st }}$ mark
$3.56 \times 10^{-3} \mathrm{~m}$
B1
Expect at least 3 sf but condone 3.6 for candidates who use $a=3.2 \times 10^{15}$
(iii) $v=u+a t / v=$ at $v^{2}=u^{2}+2 a s$ used

B1
May also use eV=1/2mv ${ }^{2}$
$4.74 \times 10^{6} \mathrm{~m} \mathrm{~s}^{-1}$ to at least 3 sf

Allow 4.8 (2 or more sf) - consistent with use of $a=3.2 \times$ $10^{15}$
(iv) $t=7.5 \times 10^{-9} \mathrm{~s}$ seen or used

$$
\begin{aligned}
& \text { May use ratios for } 1^{\text {st }} 2 \text { marks: }{ }^{S_{v} / S_{h}=v_{\mathrm{v}} / v_{h} \quad \text { C1 }} \\
& 3.53 \times 10^{-2}(\mathrm{~m}) \quad \text { A1 }
\end{aligned}
$$

$3.53 \times 10^{-2}(\mathrm{~m})$ ecf for wrong $t$
adds $3.56 \times 10^{-3}(\mathrm{~m})$ to their $3.53 \times 10^{-2}$

Allow reasonable rounding
C1

A1

## M6.B

time $=0.555(\mathrm{~s}) / 0.56(\mathrm{~s})$ (allow $0.55(\mathrm{~s})$ )
A1
(b) (i) use of appropriate kinematics equation to find vertical $v$

C1
$v=5.4\left(\mathrm{~ms}^{-1}\right)($ accept 5.4 to 5.9$)$
A1
(ii) any use of Pythagoras where $v_{h}=18$ or use of appropriate trig ratio where $v_{\mathrm{h}}=18$ and angle is to horizontal

C1
velocity $=18.8 / 18.9 / 19\left(\mathrm{~ms}^{-1}\right)$
A1
angle $=16.8$ to $18.1\left(^{\circ}\right)$
A1
3

