M1.C

[1]

M2.(a)
$$t = \sqrt{\frac{2s}{g}}$$
 or $4.5 = \frac{1}{2} \times 9.81 \times t^2$ \checkmark $t = 0.96 \text{ s}$

2

(b) Field strength = $186000 \text{V m}^{-1} \checkmark$ Acceleration = Eq / mor $186000 \times 1.2 \times 10^{-6} \checkmark$ $0.22 \text{ m s}^{-2} \checkmark$

3

(c) 0.10(3)m (allow ecf from (i)) ✓

1

(d) Force on a particle = mg and acceleration = F/m so always = $g\checkmark$

Time to fall (given distance) depends (only) on the distance and acceleration \checkmark

OR:

$$g = GM/r^2$$

Time to fall = $\sqrt{2s}/g$

so no m in equations to determine time to fall \checkmark

2

(e) Mass is not constant since particle mass will vary ✓

Charge on a particle is not constant ✓

Acceleration = Eq/m or (V/d)(q/m) or $Vq/dm\checkmark$

E or V/d constant but charge and mass are 'random' variables so q/m will vary (or unlikely to be the same) \checkmark

[12]

M3.(a) (i) use of
$$\left(s = \frac{1}{2}gt^2\right)$$
 OR $t^2 = 2s/g$

= 0.49 (0.4946 s) \checkmark allow 0.5 do not allow 0.50

Some working required for full marks. Correct answer only gets 2

3

(ii)
$$(s = vt)$$

= 8.5 × 0.4946 \checkmark ecf ai
= 4.2 m \checkmark (4.20) ecf from ai

2

(b) (i)
$$\left(s = \frac{1}{2} (u + v) t \right)$$

 $t = \frac{\frac{2.5}{u(+v)}}{(v-v)}$ or correct sub into equation above \checkmark $= \frac{\frac{2 \times 0.35}{s.5}}{s.5} = 8.2 \times 10^{-2} \text{ (s) } \checkmark \text{ (0.0824) allow 0.08 but not 0.080 or 0.1}$

Allow alternative correct approaches

2

(ii)
$$a = (v - u) / t$$
 OR correct substitution OR $a = 103$ \checkmark $(= -8.5) / 8.24 \times 10^{-2} = 103.2$)

(F = ma =) 75 × (103.2) \checkmark ecf from bi for incorrect acceleration due to

arithmetic error only, not a physics error (e.g. do not allow a = 8.5. Use of g gets zero for the question.

= 7700 N ✓ (7741) ecf (see above)

Or from loss of KE

Some working required for full marks. Correct answer only gets 2

[10]

M4.(a) (i) $(s = \frac{1}{2}gt^2)$

Allow g=10 (0.5477)

$$1.5 = \frac{1}{2}9.81t^2$$
 OR $t = \sqrt{\frac{2s}{g}}$ OR $t = \sqrt{\frac{2 \times 1.5}{9.81}}$ \checkmark (= 0.553) = 0.55 (s) \checkmark

0.6 gets 2 marks only if working shown. 0.6 on its own gets 1 mark.

2

(ii) $(s = v t = 430 \times 0.553 = 237.8 =) 240 (m)$ \checkmark ecf a(i)

1

- (b) their vertical motion is independent of their horizontal motion
 - **OR** downward / vertical acceleration is the same for both
 - **OR** acceleration <u>due to gravity</u> is the same for both
 - **OR** vertical speed / velocity is the same for both \checkmark

Allow 'time is constant' Don't allow 'similar'

(bullets A and B will be in the air) for the same time ✓

(Horizontal acceleration is zero and thus horizontal) distance is proportional to horizontal speed **OR** s = ut where u is the horizontal velocity \checkmark

'velocity smaller so distance smaller' is not sufficient

[6]

3

M5.(a) thermionic emission / by heating

B1

B1

cathode heated / heating done by electric current / overcoming work function

Must mention anode for third mark

anode which is positive wrt cathode / accelerated by electric field between anode and cathode

B1

3

(b) (i) one relevant equation seen: E = V/d / F = Ee / a = F/m

B1

Equation should be in symbols

$$a = \frac{1.6 \times 10^{-19} \times 270}{9.1 \times 10^{-31} \times 0.015}$$
 / F = 2.88 x 10⁻¹⁵

B1

Substitution may be done in several stages

 $3.16 \times 10^{15} \text{ (m s}^{-2})$

B1

Must be more than 2 sf

3

(ii) $s = (ut) + at^2$ or v = u + at and $s = v_{av}t$ OR s = vt used

B1

Appropriate symbol equation seen and used for 1st mark

3.56 × 10⁻³m

B1

Expect at least 3 sf but condone 3.6 for candidates who use $a = 3.2 \times 10^{15}$

2

(iii) $v = u + at / v = at v^2 = u^2 + 2as$ used

B1

May also use eV= ½mv2

 4.74×10^6 m s⁻¹ to at least 3 sf

Allow 4.8 (2 or more sf) – consistent with use of $a = 3.2 \times 10^{15}$

2

(iv) $t = 7.5 \times 10^{-9}$ s seen or used

C1

В1

May use ratios for 1st 2 marks: $S_v/S_h = v_v/v_h$ C1

 3.53×10^{-2} (m) A1

 3.53×10^{-2} (m) **ecf** for wrong *t*

Α1

adds 3.56×10^{-3} (m) to their 3.53×10^{-2}

B1

clipped with b(i) and b(ii)

Allow reasonable rounding

[13]

M6.B

[1]

M7.A

[1]

M8. (a) $\Delta h = 2.51 - 1.00 = 1.51$ (m) / (s =) 1.51 m seen

M1

use of appropriate kinematics formula correctly makes t subject

			M1		
	time	= 0.555 (s) / 0.56 (s) (allow 0.55 (s))			
			A1		
				3	
(b)	(i)	use of appropriate kinematics equation to find vertical v			
			C1		
		$v = 5.4 \text{ (ms}^{-1}) \text{ (accept 5.4 to 5.9)}$			
			A1		
				2	
	(ii)	any use of Pythagoras where v_h = 18 or use of appropriate trig ratio where v_h = 18 and angle is to horizontal			
			C1		
		velocity = 18.8 / 18.9 / 19 (ms ⁻¹)			
			A1		
		angle = 16.8 to 18.1 (°)			
			A1		
			- • •	3	[8]
					r-1