M1.(a) $\quad\left(3.0 \times 10^{-10} / 24\right) \times 6.02 \times 10^{23}$ seen \checkmark $\left(7.52 \times 10^{10}\right)$
(b) Decay constant $=\left(0.69 / 14.8 \mathrm{~h}^{-1}\right)$ or $1.3 \times 10^{-5} \mathrm{~s}^{-1} \checkmark$
$A=1.30 \times 10^{-5} \times 7.5 \times 10^{10}$
$9.75 \times 10^{5} \mathrm{~Bq} \quad \checkmark$
Allow 2 or 3 sf
Allow use of $A=\lambda N$ with an incorrectly calculated decay constant
(c) Activity 3.5 h later should be $\mathrm{A}=9.8 \times 10^{5} \mathrm{e}^{0.0986 \times 3.5} \mathrm{~J}$
$8.33 \times 10^{5} \mathrm{~Bq} \checkmark$
Volume of liquid $=\left(8.33 \times 10^{5} / 3600\right) \times 15=3470 \mathrm{~cm}^{3} \checkmark$
(d) Estimate gives 3700 compared with $3500 \checkmark$

Flask has more mass than average / liquid is not water \checkmark

M2.D

M4.(a) \quad (i) $\quad \lambda\left(=\ln 2 / T_{1 / 2}=0.693 / 5740\right)=1.2 \times 10^{-4}\left(\mathrm{yr}^{-1}\right)$
$\left(1.21 \times 10^{-4} \mathrm{yr}^{-1}\right)$
only allow $3.83 \times 10^{-12} s^{-1}$ if the unit has been changed working is not necessary for mark
(ii) (use of $N_{t}=N_{o} \mathrm{e}^{-\lambda t}$ and activity is proportional to N
$A_{t}=A_{o} \mathrm{e}^{\lambda t}$)
$0.375=\exp -\left(1.21 \times 10^{-4} \times \mathrm{t}\right) \checkmark$
$t=\frac{\ln \left(\frac{1}{0.375}\right)}{1.21 \times 10^{-4}}$
$\mathrm{t}=8100$ or 8200(yr) \checkmark
$1^{\text {st }}$ mark substitution, allow EC from (i)
$2^{\text {nd }}$ mark rearranging, allow EC from (i)
Allow $t / T_{1 / 2}=2{ }^{n}$ approach
3^{d} mark no $E C$ (so it is not necessary to evaluate a $C E$) so max 2 for a CE full marks can be given for final answer alone. A minus in the final answer will lose the last mark
(b) (i) (it is difficult to measure accurately)
the small drop / change in activity / count-rate the small change / drop in the ratio of C -14 to C -12
the activity would be very small / comparable to the background or the ratio of $\mathrm{C}-14$ to $\mathrm{C}-12$ is too small or there are too few C -14 atoms or there is very little decay or the level of C -14 (in the biosphere) is uncertain (this long ago)
$1^{\text {st }}$ mark needs some reference to a change in count-rate or activity for the mark be lenient in $2^{n d}$ mark in reading a script assume C-14 is the subject. Eg 'there is little activity to work with' scores mark. Also allow any reasonable suggestion. Eg carbon may have been removed by bonding to surrounding material
Don't allow, 'All the carbon has decayed'

M5.

$\beta=6$
(b) (i) the energy required to split up the nucleus into its individual neutrons and protons/nucleons (or the energy released to form/hold the nucleus from its individual neutrons and protons/nucleons \checkmark)
(ii) $7.88 \times 206=1620 \mathrm{MeV} \checkmark$ (allow 1600-1640 MeV)
(c) (i) U, a graph starting at 3×10^{22} showing exponential fall passing through 0.75×10^{22} near 9×10^{9} years

Pb , inverted graph of the above so that the graphs cross at 1.5×10^{22} near $4.5 \times 10^{\circ}$ years \checkmark
(ii) (u represents the number of uranium atoms then)
$\frac{u}{3 \times 10^{22}-u}=2$
$u=6 \times 10^{22}-2 u$
$u=2 \times 10^{22}$ atoms
(iii) (use of $N=N_{o} \mathrm{e}^{-*}$)
$2 \times 10^{22}=3 \times 10^{22} \times \mathrm{e}^{-1 t} \checkmark$
$t=\ln 1.5 / \lambda$
(use of $\lambda=\ln 2 / t_{12}$)

$$
\begin{aligned}
& \lambda=\ln 2 / 4.5 \times 10^{9}=1.54 \times 10^{-10} \\
& t=2.6 \times 10^{9} \text { years } \checkmark\left(\text { or } 2.7 \times 10^{9} \text { years }\right)
\end{aligned}
$$

M6. boron numbers correct: $A=11 ; Z=5$
β^{+}correct: $A=0 ; Z=(+) 1$
v_{e} (not anti neutrino) with numbers correct: 0,0
B1
3

M7. (a) correct numbers for beta+ (0, (+)1) and chromium (52)
(electron) neutrino with correct numbers $(0,0)$
B1
(b) $\quad \mathrm{W}^{+} N /$ (intermediate vector) boson (not Z boson)
B1
1

M8. (a) plutonium is toxic/large mass of plutonium
harmful if released into atmosphere/explosion occurred
B1
alphas dangerous when ingested/during launch etc
B1
$\max 2$
(b) unaffected
chemical bonding involves electrons (atomic) radioactivity is nuclear (owtte)/same number of nuclei present

B1
2
(c) (i) $T_{1 / 2}=\ln 2 / \lambda$

C1
2.51×10^{-10}
A1
2
(ii) molar mass calculated (0.270 kg)

C1
use of 33 kg
C1
number of moles in sample (122.2)
C1
multiplication of value by Avogadro's number

Page 6
7.36×10^{25}
(iii) $\quad(\mathrm{c})(\mathrm{i}) \times(\mathrm{c})(\mathrm{ii})$

C1
1.83×10^{16} cao
A1
$B q$
B1
3
(d) (i) uranium correct $(234,92)$

B1
alpha correct $(4,2)$ - accept He or α symbol
(ii) use of 1 g generating 500 mW

C1
16500 W total
C1
recognition that activity \times energy of one alpha $=$ power
C1
$9.00 \times 10^{-13}(\mathrm{~J})$

