	(7.52 × 10 ¹⁰)	1
(b)	Decay constant = (0.69 / 14.8 h ⁻¹) or 1.3 × 10 ^{-₅} s ⁻¹ ✓	
	$A = 1.30 \times 10^{-5} \times 7.5 \times 10^{-10}$	
	9.75 × 10⁵ Bq ✓	
	Allow 2 or 3 sf Allow use of $A = \lambda N$ with an incorrectly calculated decay constant	3
(c)	Activity 3.5 h later should be A = $9.8 \times 10^5 e^{-0.0466 \times 3.5}$ 🗸	
	8.33 × 10⁵ Bq √	
	Volume of liquid = (8.33 × 10⁵ / 3600) × 15 = 3470 cm³ ✓	3
(d)	Estimate gives 3700 compared with 3500 \checkmark	
	Flask has more mass than average / liquid is not water \checkmark	2

M1.(a) $(3.0 \times 10^{-10}/24) \times 6.02 \times 10^{23}$ seen \checkmark

[9]

[1]

M4.(a) λ (= ln 2 / $T_{1/2}$ = 0.693 / 5740) = 1.2 × 10⁻⁴ (yr⁻¹) \checkmark (i) $(1.21 \times 10^{-4} \text{ yr}^{-1})$ only allow 3.83 \times 10⁻¹² s⁻¹ if the unit has been changed working is not necessary for mark (use of $N_t = N_a e^{-\lambda t}$ and activity is proportional to N (ii) $A_{t} = A_{o} e^{-\lambda t}$ $0.375 = \exp - (1.21 \times 10^{-4} \times t) \checkmark$ $t = \frac{\ln(\frac{1}{0.375})}{1.21 \times 10^{-4}} \checkmark$ t = 8100 or 8200(yr) 🗸 1st mark substitution, allow EC from (i) 2rd mark rearranging, allow EC from (i) Allow $t / T_{1/2} = 2^{n}$ approach 3rd mark no EC (so it is not necessary to evaluate a CE) so max 2 for a CE full marks can be given for final answer alone. A minus in the final answer will lose the last mark

> (b) (i) (it is difficult to measure accurately) the small drop / change in activity / count-rate the small change / drop in the ratio of C-14 to C-12 ✓

> > the activity would be very small / comparable to the background or the ratio of C-14 to C-12 is too small or there are too few <u>C-14</u> atoms or there is very little decay or the level of C-14 (in the biosphere) is uncertain (this long ago) ✓ 1st mark needs some reference to a change in count-rate or

activity for the mark be lenient in 2nd mark in reading a script assume C-14 is the subject. Eg 'there is little activity to work with' scores mark. Also allow any reasonable suggestion. Eg carbon may have been removed by bonding to surrounding material Don't allow, '<u>All</u> the carbon has decayed'

2

[6]

1

3

M5. (a)

$$\begin{array}{c} (^{206}_{76}X \rightarrow ^{206}_{82}Pb + \beta \times \stackrel{0}{_{-1}}\beta + \beta \times \overline{v_e}) \\ \beta = 6 \checkmark \end{array}$$

(ii) 7.88 × 206 = 1620 MeV ✓ (allow 1600-1640 MeV)

(c) (i) U, a graph starting at
$$3 \times 10^{22}$$
 showing exponential fall passing through 0.75×10^{22} near 9×10^{9} years \checkmark

Pb, inverted graph of the above so that the graphs cross at 1.5×10^{22} near 4.5×10^9 years \checkmark

(ii) (*u* represents the number of uranium atoms then)

$$\frac{u}{3 \times 10^{22} - u} = 2$$
$$u = 6 \times 10^{22} - 2u \checkmark$$
$$u = 2 \times 10^{22} \text{ atoms}$$

1

2

1

(iii) (use of
$$N = N_{\circ} e^{-\lambda t}$$
)
 $2 \times 10^{22} = 3 \times 10^{22} \times e^{-\lambda t} \checkmark$
 $t = \ln 1.5 / \lambda$
(use of $\lambda = \ln 2 / t_{1/2}$)

$$\lambda = \ln 2 / 4.5 \times 10^{\circ} = 1.54 \times 10^{-10} \checkmark$$

t = 2.6 × 10° years \checkmark (or 2.7 × 10° years)
3
[10]

M6. boron numbers correct: A = 11; Z = 5 B1 β° correct: A = 0; Z = (+)1 B1 v_{\circ} (not anti neutrino) with numbers correct: 0,0 B1 3 [3]

M7.		(a)	correct numbers for beta+ (0, (+)1) and chromium (52)			
				B1		
		(ele	ctron) neutrino with correct numbers (0,0)			
				B1	2	
	(b)	W⁺/	W/(intermediate vector) boson (not Z boson)			
				B1	1	
					1	[3]

M8.		(a)	plutonium is toxic/large mass of plutonium		
				B1	
		harn	nful if released into atmosphere/explosion occurred		
				B1	
		alph	as dangerous when ingested/during launch etc		
				B1	max2
	(b)	una	ffected		
				B1	
		cher radio pres	mical bonding involves electrons (atomic) pactivity is nuclear (owtte)/same number of nuclei eent		
				B1	2
					2
	(c)	(i)	$T_{\frac{1}{2}} = \ln 2/\lambda$		
				C1	
			2.51 × 10 ⁻¹⁰		
				A1	2
		(ii)	molar mass calculated (0.270 kg)		
				C1	
			use of 33 kg		
				C1	
			number of moles in sample (122.2)		
				C1	
			multiplication of value by Avogadro's number		

		7.36 × 10 ²⁵	C1	
			A1	5
	(iii)	(c) (i) × (c) (ii)		
		1.83 x 10 ¹⁶ coo	C1	
		1.03 × 10 ² Cau	A1	
		Bq	B1	3
				3
(d)	(i)	uranium correct (234,92)		
		alpha correct (4.2) – accept He or a symbol	B1	
		alpha confect (4,2) – accept ne or d symbol	B1	2
	(ii)	use of 1 g generating 500 mW		
		16500 W total	C1	
			C1	
		recognition that activity × energy of one alpha = power		
		9.00 × 10⁻¹³ (J)	C1	
		、 <i>,</i>	A1	4
				-

[20]