M1.(a) (i) $\alpha = T / I = 8.80 / 0.565 (= 15.6 \text{ rad s}^{-2}) \checkmark$ use of $t = (\omega_2 - \omega_1) / \alpha$ leading to $t = 8.08 \text{ s} \checkmark$

- 2
- (ii) $\theta = \frac{1}{2} (172 + 195) \times 126 \checkmark$ = 23100 rad 23100 / 2 π = 3680 rev \checkmark OR rev per s = 1200 / 60 (=20) \checkmark $\theta = \frac{1}{2} (172 + 195) \times 20 \checkmark$ = 3670 rev \checkmark Accept alternative ways of calculating area under graph Areas are: 504 rad or 80 rev 21670 rad or 3450 rev 945 rad or 150 rev Numbers will vary if 8.1 s used for acceleration period Last mark: give CE for wrong θ

1

- (b) (i) Shows curve of increasing gradient up to first vertical dotted line
 OR Shows curve of decreasing gradient up to first vertical dotted line
 MARK ii BEFORE i
 Answer <u>must</u> match the answer given in part ii
 i.e. α increasing: decreasing gradient
 α decreasing: increasing gradient
 Mark awarded for shape only; ignore any changes to the height of the graph or where curve reaches 126 rad s⁻¹
 - (ii) Mass of washing will decrease as it loses water, so M of I will decrease
 ✓
 (*T* constant) so α increases ✓
 OR washing moves closer to drum, increasing M of I ✓
 (*T* constant) so α decreases ✓
 OR friction (torque) increases with speed ✓
 so α decreases ✓
 Do not credit answers in terms of conservation of angular momentum

2

1

Not m is the mass and r the radius – must refer to point or small masses or distribution of mass OR $\Sigma m r^2$ with *m* and *r* defined OR *I* is a measure of the mass and the way the mass is distributed about an axis 1 More of the satellite's mass is at greater radius \checkmark 1 (Small change in r) gives large change in r^2 , hence large change in I OR even though *m* of panels is small, much of *m* is at a greater radius and radius is squared \checkmark For 2nd mark must refer to effect of r². 1 Angular momentum = $110 \times 5.2 = 572$ \checkmark (c) 1 N m s OR kg m² s⁻¹ \checkmark accept

The (total) angular momentum (of a system) remains constant provided no external torque

Do not accept 'force' in place of 'torque'

I is the sum of the *m* r^2 products for point masses *m* at radius $r \checkmark$

M2.(a)

acts (on the system) ✓

Or WTTE

(b)

1

1

1

1

1

[8]

(d) (Use of conservation of ang momtm) 572 = 230 × ω_2 ✓

$$\omega_2 = 572 / 230 = 2.49 \text{ rad s}^{-1}$$

M3.(a)
$$\frac{3.5}{(2\pi \times 0.088)} = 6.3 \text{ rev}$$

 $6.3 \times 2\pi$ = 39.8 rad or 40 rad \checkmark

OR <u>3.5</u> 0.088= 39.8 or 40 rad ✓

If correct working shown with answer 40 rad give the mark Accept alternative route using equations of motion

(b) $\omega = v/r = 2.2/0.088 = 25 \text{ rad s}^{-1} \checkmark$

(c) (i)
$$E = \frac{1}{2}I\omega^2 + \frac{1}{2}mv^2 + mgh$$

 $= (0.5 \times 7.4 \times 25^2)$
 $+ (0.5 \times 85 \times 2.2^2)$
 $+ (85 \times 9.81 \times 3.5)$
 $= 2310 \checkmark$
 $+ 206 \checkmark$
 $+ 2920 \checkmark$
(= 5440 J or 5400 J)
CE from 1b
 $\frac{1}{2}I\omega^2 + \frac{1}{2}mv^2 = 2310 + 210 = 2520 J$
 $\frac{1}{2}I\omega^2 + mgh = 2310 + 2920 = 5230 J$
 $\frac{1}{2}mv^2 + mgh = 210 + 2920 = 3130 J$
Each of these is worth 2 marks

3

- (ii) Work done against friction = Tθ = 5.2 × 40 = 210J ✓ Total work done = W = 5400 + 210 = 5600J ✓ 2 sig fig ✓ *CE if used their answer to i rather than 5400J Accept 5700 J (using 5440 J) Sig fig mark is an independent mark*
- (d) Time of travel = distance / average speed = $3.5 / 1.1 = 3.2s \checkmark$ <u>5600</u>

 $P_{\rm ave} = 3.2 = 1750 \, {\rm W}$

 $P_{\text{max}} = P_{\text{ave}} \times 2 = 3500 \text{ W} \checkmark$

OR accelerating torque = $T = W/\theta$ = 5600 / 40 = 140 N m \checkmark P = $T \omega_{max}$ = 140 × 25 = 3500 W \checkmark *CE from ii* 1780 W if 5650 J used

[10]

2

3