- Q1.(a) Scattering experiments are used to investigate the nuclei of gold atoms.

 In one experiment, alpha particles, all of the same energy (monoenergetic), are incident on a foil made from a single isotope of gold.
 - (i) State the main interaction when an alpha particle is scattered by a gold nucleus.

 	 •••••	

(1)

(1)

(ii) The gold foil is replaced with another foil of the same size made from a mixture of isotopes of gold. Nothing else in the experiment is changed.

Explain whether or not the scattering distribution of the monoenergetic alpha particles remains the same.

 	 •	

(b) Data from alpha–particle scattering experiments using elements other than gold allow scientists to relate the radius R, of a nucleus, to its nucleon number, A. The graph shows the relationship obtained from the data in a graphical form, which obeys

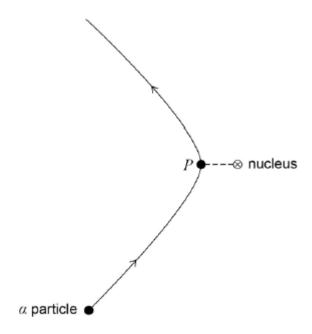
the relationship $R = r_0 A^{\frac{1}{3}}$ 9.0

8.0 $R/10^{-15}$ m

7.0

6.0 75100

125


150

175

(i) Use information from the graph to show that r_0 is about 1.4 × 10⁻¹⁵ m.

	(ii) Show that the radius of a $^{23}\mathrm{V}$ nucleus is about 5 × 10 $^{-15}$ m.	(1)
		(2)
(c)	Calculate the density of a ${}^{23}\mathrm{V}$ nucleus. State an appropriate unit for your answer.	
	density unit	(3) (Total 8 marks)

Q2. The diagram shows the path of an α particle deflected by the nucleus of an atom. Point P on the path is the point of closest approach of the α particle to the nucleus.

Which of the following statements about the α particle on this path is correct?

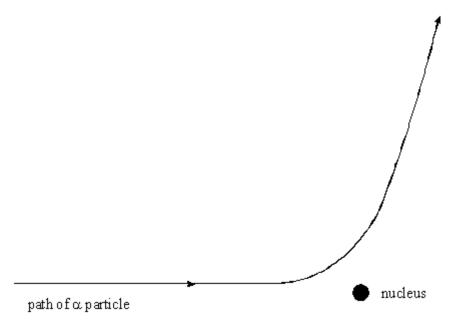
- A Its acceleration is zero at P.
- **B** Its kinetic energy is greatest at P.
- C Its potential energy is least at P.
- **D** Its speed is least at P.

(Total 1 mark)

- Q3. In an experiment to investigate the structure of the atom, α particles are directed normally at a thin metal foil which causes them to be scattered.
 - (a) (i) In which direction will the number of α particles per second be a maximum?

.....

(ii) State what this result suggests about the structure of the atoms in the metal.

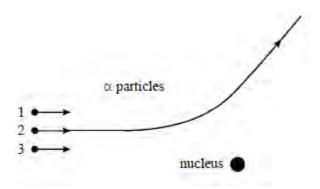

(2)

(2)

(b) A small number of α particles are scattered through 180°.

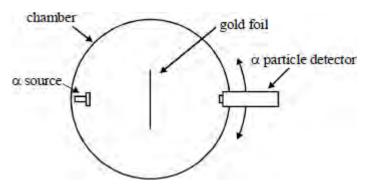
Explain what this suggests about the structure of the atoms in the metal.

(c) The figure shows the path of an $\boldsymbol{\alpha}$ particle passing near a nucleus.


(i) Name the force that is responsible for the deflection of the α particle.

(ii) Draw an arrow on the diagram in the direction of the force on the α particle in the position where the force is a maximum.

	(iii)	The nucleus is replaced with one which has a larger mass number and a smaller proton number.	
		Draw on the diagram the path of an α particle that starts with the same velocity and position as that of the α particle drawn.	//
		(Total 8 ma	4) arks
	<i>(</i> 1)		
Q4. (a)	(i)	Why is it necessary to remove the air from the chamber in a Rutherford scattering experiment?	
	(ii)	Give two conclusions that can be deduced about the nucleus from the results of such an experiment.	
		conclusion 1	
		conclusion 2	
	(iii)	What force or interaction is responsible for Rutherford scattering?	
			(4

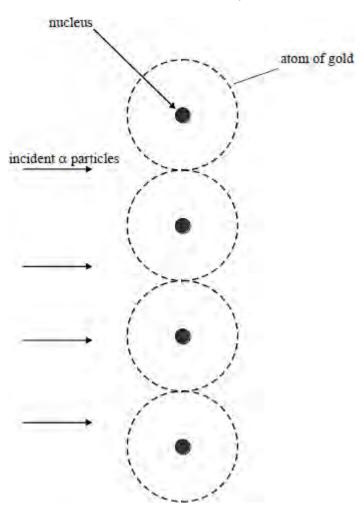

(b) The figure shows three α particles, all with the same kinetic energy, directed at a nucleus. The path followed by α particle 2 is given.

Draw lines on the figure to show the paths followed by α particles 1 and 3.

(2) (Total 6 marks)

Q5.The diagram below shows the apparatus used to investigate Rutherford scattering, in which α particles are fired at a gold foil.

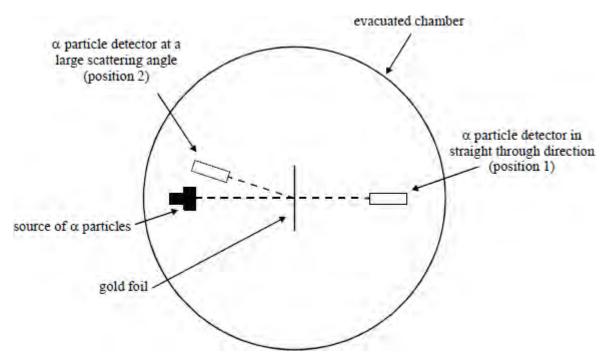
(a)	Why is it essential for there to be a vacuum in the chamber?	
		(2)


- (b) What observations made with this apparatus support each of the following conclusions?No explanation is required.
 - (i) The nuclear radius of gold is much smaller than its atomic radius.

 	• • •	• • •	• • •	 	 	 • •	• •	 • •	• • •	• •	• •	٠.	• •	٠.	 	 • •	• •	٠.	• •	• •	• •	• •	 	 	• •	• •	 	 • •	 • • •	٠.	 	 	 	

(ii) Most of the mass of an atom of gold is contained in its nucleus.

(c) The drawing below shows α particles incident on a layer of atoms in a gold foil.


On this figure draw the complete path followed by **each** of the α particles shown.

(3) (Total 8 marks)

(3)

Q6.The figure below represents an experiment on Rutherford scattering in which α particles are directed at a gold foil. The detector is shown in two positions in the evacuated chamber.

(b)	Explain why the gold foil should be very thin.
(c)	Explain why the count rate from the α particle detector in position 1 is much greater than that in position 2.
	What can be deduced from this observation about the structure of the atom and the
	properties of the nucleus of gold?

Why is it necessary to remove the air from the apparatus?

(a)

 •
(Total 6 marks)