	M1. D	[1]
	M2. D	[1]
	М3.В	[1]
	M4.D	[1]
	M5. D	[1]
	M6. C	[1]
M7. (a)	 (i) elastic potential energy and gravitational potential energy ✓ For elastic pe allow "pe due to tension", or "strain energy" etc. 	

(ii) elastic pe → kinetic energy → gravitational pe → kinetic energy → elastic pe ✓ ✓
[or pe→ke→pe→ke→pe is ✓ only]
[or elastic pe → kinetic energy → gravitational pe is ✓ only]
If kinetic energy is not mentioned, no marks.
Types of potential energy must be identified for full credit.

 (b) (i) period = 0.80 s ✓ during one oscillation there are two energy transfer cycles (or elastic pe→ke→gravitational pe→ke→elastic pe in 1 cycle) or there are two potential energy maxima per complete oscillation ✓ Mark sequentially.

2

2

2

(ii) sinusoidal curve of period 0.80 s ✓
 – cosine curve starting at *t* = 0 continuing to *t* = 1.2s ✓
 For 1st mark allow ECF from T value given in (i).

(c) (i) use of
$$T = \frac{2\pi\sqrt{\frac{m}{k}}}{k}$$
 gives $0.80 = \frac{2\pi\sqrt{\frac{0.35}{k}}}{\sqrt{\frac{1}{k}}}$

$$k \left(= \frac{4\pi^2 \times 0.35}{0.80^2} \right) = 22 \ (21.6) \ \checkmark \quad \text{N m}^{-1} \ \checkmark$$

Unit mark is independent: insist on N m^{-1} . Allow ECF from wrong T value from (i): use of 0.40s gives 86.4 (N m^{-1}).

3

(ii) maximum ke = $(\frac{1}{2} m v_{max}^{2}) = 2.0 \times 10^{-2}$ gives

$$v_{\text{max}^2} = \frac{2.0 \times 10^{-2}}{0.5 \times 0.35} \checkmark (= 0.114 \text{ m}^2 \text{s}^{-2}) \text{ and } v_{\text{max}} = 0.338 \text{ (m s}^{-1}) \checkmark$$

 $v_{\text{max}} = 2\pi f A$ gives $A = \frac{0.338}{2\pi \times 1.25}$

and $A = 4.3(0) \times 10^{-2} \text{ m} \checkmark \text{ i.e. about 40 mm}$

 $[or maximum ke = (\frac{1}{2} m v_{max}^2) = \frac{1}{2} m (2\pi fA)^2 \checkmark$

$$\frac{1}{2} \times 0.35 \times 4\pi^{2} \times 1.25^{2} \times A^{2} = 2.0 \times 10^{-2} \checkmark$$

$$\frac{2 \times 2.0 \times 10^{-2}}{4\pi^{2} \times 0.35 \times 1.25^{2}} \checkmark (= 1.85 \times 10^{-3})$$
and $A = 4.3(0) \times 10^{-2} \text{ m} \checkmark \text{ i.e. about 40 mm]}$
[or maximum ke = maximum pe = 2.0×10^{-2} (J)
maximum pe = $\frac{1}{2} k A^{2} \checkmark$
 $\therefore 2.0 \times 10^{-2} = \frac{1}{2} \times 21.6 \times A^{2} \checkmark$
from which $A^{2} = \frac{2 \times 2.0 \times 10^{-2}}{21.6} \checkmark (= 1.85 \times 10^{-3})$
and $A = 4.3(0) \times 10^{-2} \text{ m} \checkmark \text{ i.e. about 40 mm]}$
First two schemes include recognition that $f = 1 / T \text{ i.e. } f = 1 / 0.80 = 1.25$ (Hz).
Allow ECF from wrong T value from (i) - 0.40 sgives $A = 2.15 \times 10^{-3}$ m but mark to max 3.
Allow ECF from wrong k value from (i) -86.4 Nm^{-1} gives $A = 2.15 \times 10^{-2} \text{ m but mark to max 3.}$
[14]

[1]

2

M8.D

M9.(a) acceleration is proportional to displacement (from equilibrium) ✓ Acceleration proportional to negative displacement is 1st mark only.

> acceleration is in opposite direction to displacement or towards a fixed point / equilibrium Don't accept "restoring force" for accln.

position 🗸

(b) (i)
$$f\left(=\frac{1}{2\pi}\sqrt{\frac{g}{l}}\right) = \frac{1}{2\pi}\sqrt{\frac{9.81}{0.984}} \checkmark = 0.503 (0.5025) (Hz) \checkmark$$

3SF is an independent mark.

[or
$$T\left(=2\pi\sqrt{\frac{l}{g}}\right)=2\pi\sqrt{\frac{0.984}{9.81}}$$
 \checkmark (= 1.9(90) (s))

When g = 9.81 is used, allow either 0.502 or 0.503 for 2^{nd} and 3^{nd} marks.

$$f\left(=\frac{1}{T}\right) = \frac{1}{1.990} = 0.503 \ (0.5025) \ (Hz)$$

Use of $g = 9.8$ gives 0.502 Hz: award only 1 of first 2 marks

if quoted as 0.502, 0.503 0.50 or 0.5 Hz.

answer to 3SF 🗸

(ii)
$$a\left(=-(2\pi f)^{2}x\right)=(-)(2\pi \times 0.5025)^{2} \times 42 \times 10^{-3} \checkmark$$

Allow ECF from **any** incorrect f from (b)(i).

= 0.42 (0.419) (m s⁻²) 🗸

(c) recognition of 20 oscillations of (shorter) pendulum

and / or 19 oscillations of (longer) pendulum 🗸

Explanation: difference of 1 oscillation or phase change of 2π

or $\Delta t = 0.1$ so n = 2 / 0.1 = 20, or other acceptable point \checkmark

time to next in phase condition = 38 (s) ✓ Allow "back in phase (for the first time)" as a valid explanation.

[or $(T = 1.90 \text{ s so})(n + 1) \times 1.90 = n \times 2.00 \checkmark$

gives n = 19 (oscillations of longer pendulum) \checkmark

minimum time between in phase condition = 19 × 2.00 = 38 (s) 🗸]

3

•
•

2

2.4 Hz gets C1

A1

C1

(ii) correct shape (inverse)

B1

48.7 (49) m

Use of
$$T = 2\pi \sqrt{\frac{l}{g}}$$

(b) (i)

C1

(ii)
$$v = 120\ 000\ /\ 3600 = 33(.3)\ m\ s^{-1}$$

B1

A1

Use of
$$F = m v^{2}/r$$
 (allow v in km h⁻¹)
B1
Total tension = 6337 + (280 × 9.81) = 9.083 × 10° N
Allow their central force
B1
Divide by 4 2.27 × 10° N
Allow their central force
B1
(iii) $mgh = \frac{1}{2} mv^{2}$
B1
Condone: Use of $v = 2\pi fA$ (max2)
9.8×44 = 0.5 v² Allow 45 in substitution
B1
Condone 22 m s⁻¹ (Use of 45 gives 29.7)

B1

	106 km h ⁻¹ (their m s ⁻¹ correctly converted) Or compares with 33 m s ⁻¹		
		B1	
(iv)	1/16 th (0.625) % of KE left if correct		
	Allow 1/8 (0.125)or 1/32(0.313)	M 1	
	KE at start = 5.6 × 10 ⁴ J or states energy \propto speed ² so speed is 1/4		
	Allow for correct sub ^{<i>n</i>} $E = \frac{1}{2} 280 \times 20^{2} x$ factor from incorrect number of swings calculated correctly	M1	
	Final speed calculated = 5 m s⁻¹		
	Must be from correct working	A1 [17]
)			[1]

M12.B

M11.D

M13. D

M14. A

[1]

[1]