M1.D

M2.D

M3.B

M4.D

M5.D

M6.C

M7.(a) (i) elastic potential energy and gravitational potential energy
For elastic pe allow "pe due to tension", or "strain energy" etc.
(ii) elastic pe \rightarrow kinetic energy \rightarrow gravitational pe
\rightarrow kinetic energy \rightarrow elastic pe $\checkmark \checkmark$
[or $\mathrm{pe} \rightarrow \mathrm{ke} \rightarrow \mathrm{pe} \rightarrow \mathrm{ke} \rightarrow \mathrm{pe}$ is \checkmark only]
[or elastic pe \rightarrow kinetic energy \rightarrow gravitational pe is \checkmark only]
If kinetic energy is not mentioned, no marks.
Types of potential energy must be identified for full credit.
(b) (i) period $=0.80 \mathrm{~s}$
during one oscillation there are two energy transfer cycles (or elastic pe $\rightarrow \mathrm{ke} \rightarrow$ gravitational pe $\rightarrow \mathrm{ke} \rightarrow \mathrm{elastic}$ pe in 1 cycle) or there are two potential energy maxima per complete oscillation Mark sequentially.
(ii) sinusoidal curve of period 0.80 s

- cosine curve starting at $t=0$ continuing to $t=1.2 \mathrm{~s}$

For ${ }^{\text {st }}$ mark allow ECF from T value given in (i).
(c) (i) use of $T=2 \pi \sqrt{\frac{m}{k}}$ gives $0.80=2 \pi \sqrt{\frac{0.35}{k}}$,

$$
\therefore k\left(=\frac{4 \pi^{2} \times 0.35}{0.80^{2}}\right)=22(21.6) \checkmark \mathrm{N} \mathrm{~m}^{-1}
$$

Unit mark is independent: insist on $\mathrm{N} \mathrm{m}^{-1}$.
Allow ECF from wrong T value from (i): use of 0.40 s gives $86.4\left(\mathrm{~N} \mathrm{~m}^{-1}\right)$.
(ii) maximum $\mathrm{ke}=\left(1 / 2 m v_{\max }{ }^{2}\right)=2.0 \times 10^{-2}$ gives

$$
\begin{gathered}
v_{\max }^{2}=\frac{2.0 \times 10^{-2}}{0.5 \times 0.35} \checkmark\left(=0.114 \mathrm{~m}^{2} \mathrm{~s}^{-2}\right) \text { and } v_{\max }=0.338\left(\mathrm{~m} \mathrm{~s}^{-1}\right) \checkmark \\
v_{\max }=2 \pi f A \text { gives } A=\frac{0.338}{2 \pi \times 1.25} \checkmark \\
\text { and } A=4.3(0) \times 10^{-2} \mathrm{~m} \checkmark \text { i.e. about } 40 \mathrm{~mm} \\
\text { [or maximum ke }=\left(1 / 2 m v_{\max }{ }^{2}\right)=1 / 2 m(2 \pi f A)^{2} \checkmark
\end{gathered}
$$

$$
\begin{aligned}
& \quad 1 / 2 \times 0.35 \times 4 \pi^{2} \times 1.25^{2} \times A^{2}=2.0 \times 10^{-2} \checkmark \\
& \therefore A^{2}=\frac{2 \times 2.0 \times 10^{-2}}{4 \pi^{2} \times 0.35 \times 1.25^{2}} \checkmark\left(=1.85 \times 10^{-3}\right) \\
& \text { and } \left.A=4.3(0) \times 10^{-2} \mathrm{~m} \checkmark \text { i.e. about } 40 \mathrm{~mm}\right] \\
& {\left[\text { or maximum ke }=\text { maximum pe }=2.0 \times 10^{-2}(\mathrm{~J})\right.} \\
& \text { maximum pe }=1 / 2 \mathrm{k} A^{2} \checkmark \\
& \therefore 2.0 \times 10^{-2}=1 / 2 \times 21.6 \times A^{2} \\
& \text { from which } A^{2}=\frac{2 \times 2.0 \times 10^{-2}}{21.6} \checkmark\left(=1.85 \times 10^{-3}\right) \\
& \text { and } A=4.3(0) \times 10^{-2} \mathrm{~m} \checkmark \text { i.e. about } 40 \mathrm{~mm} \text {] } \\
& \quad \text { First two schemes include recognition that } f=1 / T \text { i.e. } f=1 / \\
& \quad 0.80=1.25(H z) \text {. } \\
& \quad \text { Allow ECF from wrong } T \text { value from (i) }-0.40 \text { sgives } A=2.15 \\
& \times 10^{-2} \mathrm{~m} \text { but mark to max } 3 \text {. } \\
& \quad \text { Allow ECF from wrong } \mathrm{k} \text { value from (i) }-86.4 \mathrm{Nm}^{-1} \text { gives } A= \\
& 2.15 \times 10^{-2} \mathrm{~m} \text { but mark to max } 3 \text {. }
\end{aligned}
$$

M8.D

M9.(a) acceleration is proportional to displacement (from equilibrium) \checkmark
Acceleration proportional to negative displacement is $1^{\text {st }}$ mark only.
acceleration is in opposite direction to displacement or towards a fixed point / equilibrium
Don't accept "restoring force" for accln.
position
(b) (i)
$f\left(=\frac{1}{2 \pi} \sqrt{\frac{g}{l}}\right)=\frac{1}{2 \pi} \sqrt{\frac{9.81}{0.984}} \checkmark=0.503(0.5025)(\mathrm{Hz})$
3SF is an independent mark.
[or $T\left(=2 \pi \sqrt{\frac{l}{g}}\right)=2 \pi \sqrt{\frac{0.984}{9.81}} \quad \checkmark(=1.9(90)(\mathrm{s}))$
When $g=9.81$ is used, allow either 0.502 or 0.503 for $2^{n d}$ and 3 marks.

$$
f\left(=\frac{1}{T}\right)=\frac{1}{1.990}=0.503(0.5025)(\mathrm{Hz})
$$

Use of $\boldsymbol{g}=9.8$ gives 0.502 Hz : award only 1 of first 2 marks if quoted as $0.502,0.5030 .50$ or 0.5 Hz .
answer to 3SF
(ii)

$$
a\left(=-(2 \pi f)^{2} x\right)=(-)(2 \pi \times 0.5025)^{2} \times 42 \times 10^{-3}
$$

Allow ECF from any incorrect from (b)(i).

$$
=0.42(0.419)\left(\mathrm{m} \mathrm{~s}^{-2}\right) \checkmark
$$

(c) recognition of 20 oscillations of (shorter) pendulum
and / or 19 oscillations of (longer) pendulum \checkmark
Explanation: difference of 1 oscillation or phase change of 2π
or $\Delta t=0.1$ so $n=2 / 0.1=20$, or other acceptable point \checkmark
time to next in phase condition = 38 (s)
Allow "back in phase (for the first time)" as a valid explanation.
[or $(T=1.90 \mathrm{~s} \mathrm{so})(n+1) \times 1.90=n \times 2.00 \checkmark$
gives $n=19$ (oscillations of longer pendulum)
minimum time between in phase condition $=19 \times 2.00=38(\mathrm{~s}) \checkmark$]

M10.(a) (i) correct period read from graph or use of $f=1 / T 0.84 \pm 0.01$
correct frequency 1.2 (1.18-1.25 to 3 sf)
A1
(ii) correct shape (inverse)

Crossover PE $=\mathrm{KE}$
(b) (i) Use of $T=2 \pi \sqrt{\frac{l}{g}}$

B1

C1
48.7 (49) m

A1
(ii) $\quad v=120000 / 3600=33(.3) \mathrm{m} \mathrm{s}^{-1}$

B1
Use of $F=m v^{2} / r$ (allow v in $\mathrm{km} \mathrm{h}^{-1}$)
B1
Total tension $=6337+(280 \times 9.81)=9.083 \times 10^{3} \mathrm{~N}$ Allow their central force

B1
Divide by $4 \quad 2.27 \times 10^{3} \mathrm{~N}$
Allow their central force
B1
(iii) $m g h=1 / 2 m v^{2}$

B1
Condone: Use of $v=2 \pi f A(\max 2)$
$9.8 \times 44=0.5 v^{2} \quad$ Allow 45 in substitution
B1
Condone $22 \mathrm{~m} \mathrm{~s}^{-1}$
$29.4 \mathrm{~m} \mathrm{~s}^{-1} \quad$ (Use of 45 gives 29.7)
$106 \mathrm{~km} \mathrm{~h}^{-1}$ (their $\mathrm{m} \mathrm{s}^{-1}$ correctly converted)
Or compares with $33 \mathrm{~m} \mathrm{~s}^{-1}$
(iv) $1 / 16^{m}(0.625) \%$ of KE left if correct

M1
Allow $1 / 8$ (0.125)or 1/32(0.313)
KE at start $=5.6 \times 10^{4} \mathrm{~J}$ or states energy \propto speed 2 so speed is $1 / 4$

Allow for correct subn $E=1 / 2280 \times 20^{2} x$ factor from incorrect number of swings calculated correctly

Final speed calculated $=5 \mathrm{~m} \mathrm{~s}^{-1}$

Must be from correct working

M11.D

M12.B

M13. D

M14. A

