M1.(a) Apparent magnitude at a distance of 10pc
Allow "brightness".
Do not allow luminosity or magnitude.
(b) Absolute magnitude from 15 to -10

Temperature from 50000 K to 2500 K
Allow 15 to -15.
Allow 50000 to 3500 K.
(c) (i) S at 5700 K and abs mag 5

The position of S should be consistent with the scales on the axes. Allow ce on scale.
Allow 6000 for T.
If labels not present, or if only correct extreme values on scale, S should be to the right of and below the centre.
(ii) W at same abs mag as S , but further to left

Judgements on ii - iv should be based on the position of S. If S is not labelled, it should be based on where S should be.
(iii) X at same temperature as S but greater absolute magnitude
(iv) Y at same abs mag or above S , on the right hand side of the diagram
(d) Similar power output
but is hotter \checkmark
Ref to $P=\sigma A T^{4}$ hence W must have smaller diameter than the Sun
Allow luminosity for Power.
Answer must be supported to get the mark.

M2.(a) (i) Similarity both would appear the same brightness
As the apparent magnitudes are the same Description and explanation needed for mark. Any references to same size gets zero for $1^{\text {st }}$ mark.

Difference Kocab would appear orange / red, Polaris yellow / white
Due to their spectral classes / different temperatures Allow different colours + ref to spectral class for second mark If colour named, should be correct.
(ii) Polaris is further from Earth:

Alternative:
Polaris hotter and same size
Both stars same size and Polaris is hotter
As $\quad P=\sigma A T^{4}$
Hence, Polaris has brighter absolute magnitude / is intrinsically brighter

Same A, would mean that Polaris has greater power output.
Polaris must be further from Earth to appear same brightness as Kocab.
Same apparent brightness, therefore Polaris is further away.
(b) (i) $\quad \mathrm{v}=\mathrm{Hd}$
$\mathrm{v}=0.025 \times 3 \times 10^{5}=7.5 \times 10^{3} \mathrm{~km} \mathrm{~s}^{-1} \checkmark$
$1^{\text {st }}$ mark is for calculating v
$\mathrm{d}=340 \times 10^{\circ} \mathrm{l} \mathrm{yr}=340 / 3.26 \mathrm{Mpc}=104 \mathrm{Mpc} \checkmark$
$2^{\text {nd }}$ mark is for working out d in Mpc
$\mathrm{H}=7.5 \times 10^{3} / 104=72 \mathrm{kms}^{-1} \mathrm{Mpc}^{-1} \checkmark$
$3^{\text {td }}$ mark is for calculating H in the correct unit.
(ii) Age of Universe $=1 / \mathrm{H}$
${ }^{1 t}$ mark is for the equation
$=0.014 \times 10^{6} \times 3.26 \times 9.5 \times 10^{15} / 1000$
$2^{\text {nd }}$ is for the answer with working
$=4.3 \times 10^{17}$ seconds
(= 13.6 billion years)
Unit consistent with calculation.
$3^{\text {rd }}$ is for a time unit consistent with their answer / working

M3. (a) (i) the brightness of a star as it would appear from a distance of $10 \mathrm{pc} \checkmark$
(ii) Betelgeuse

Bellatrix is actually a lot brighter than Betelgeuse (the absolute magnitude is a lot more negative), but only appears to be a bit brighter (the apparent magnitude is only a little smaller) so Betelgeuse must be closer \checkmark
(b) (i) use of $\lambda_{\max } \mathrm{T}=0.0029$

$$
\begin{aligned}
\text { gives } & \lambda_{\max }=0.0029 / 22000 \checkmark \\
& =1.32 \times 10^{-7}(\mathrm{~m}) \checkmark
\end{aligned}
$$

intensity

(ii)
steeper LHS than RHS \checkmark
intensity goes towards zero as the wavelength goes to end of axis \checkmark
(c) (i) $B \checkmark$
(ii) helium \checkmark
(iii) temperature too low (for atmosphere of Betelgeuse to have hydrogen in $\mathrm{n}=2$ state) \checkmark

1
[10]

M4. (a) (i) Segin: spectral class B is hottest (1)
(ii) Shedir: class K is closest towards red end (1)
(iii) Shedir: 2.2 is smallest value of apparent magnitude (1)
(iv) Achird: apparent magnitude lower (brighter) than absolute magnitude and they are equal when star is 10 pc away (1)
(b) (i) (use of $m-M=5 \log (d / 10)$ gives) $2.2-(-4.6)=5 \log \left(\frac{d}{10}\right)$ $d=229 \mathrm{pc}(1)$
(ii) (use of $\lambda_{\text {max }} T=0.0029$ gives) $\lambda_{\text {max }}=\frac{0.0029}{12000}=2.4(2) \times 10^{-7} \mathrm{~m}$ (1)

M5. (a) (i) P has the lowest peak wavelength $\left(\lambda_{\text {max }}\right)$ (1)
(since) $\lambda_{\max } T=$ constant, lowest $\lambda_{\text {max }}$ means highest T (1)
[or P has highest peak intensity (1)
intensity is power per unit area, or ref to Stefan's law (1)]
(ii) $\lambda_{\text {max }}=300 \times 10^{-9}(\mathrm{~m})(1)$
(use of $\lambda_{\text {max }} T=0.0029$ gives) $\quad T=9.7 \times 10^{3} \mathrm{~K}(1)\left(9.67 \times 10^{3} \mathrm{~K}\right)$
$\max 3$
(b) (i) A and B (1)
(ii) light from the star passes through the atmosphere of the star (1) which contains hydrogen with electrons in $n=2$ state (1) electrons in this state absorb certain energies and (hence) frequencies of light (1) the light is re-emitted in all directions, so that the intensity of these frequencies is reduced in any given direction, resulting in absorption lines (1)

