M1. (a)	Appar	rent magnitude at a distance of 10pc Allow "brightness". Do not allow luminosity or magnitude.	1
	(b)	Absolute magnitude from 15 to -10 Temperature from 50 000K to 2500K <i>Allow 15 to -15.</i> <i>Allow 50 000 to 3500 K.</i>	2
	(c)	 S at 5700 K and abs mag 5 The position of S should be consistent with the scales on the axes. Allow ce on scale. Allow 6000 for T. If labels not present, or if only correct extreme values on scale, S should be to the right of and below the centre. 	1
		 (ii) W at same abs mag as S, but further to left Judgements on ii – iv should be based on the position of S. If S is not labelled, it should be based on where S should be. 	1
		(iii) X at same temperature as S but greater absolute magnitude	1
		(iv) Y at same abs mag or above S, on the right hand side of the diagram	1
	(d)	Similar power output ✓ but is hotter ✓ Ref to P = σAT ^₄ hence W must have smaller diameter than the Sun ✓ <i>Allow luminosity for Power.</i> <i>Answer must be supported to get the mark.</i>	3

[10]

 M2.(a) (i) Similarity both would appear the same brightness As the apparent magnitudes are the same ✓
 Description and explanation needed for mark. Any references to same size gets zero for 1st mark.

> Difference Kocab would appear orange / red, Polaris yellow / white Due to their spectral classes / different temperatures ✓ Allow different colours + ref to spectral class for second mark If colour named, should be correct.

(ii) Polaris is further from Earth: *Alternative: Polaris hotter and same size*

Both stars same size and Polaris is hotter \checkmark

As P = σ AT⁴ Hence, Polaris has brighter absolute magnitude / is intrinsically brighter

Same A, would mean that Polaris has greater power output. 🗸

Polaris must be further from Earth to appear same brightness as Kocab. ✓ Same apparent brightness, therefore Polaris is further away.

3

2

(b) (i) v = Hd

- $v = 0.025 \times 3 \times 10^{\circ} = 7.5 \times 10^{\circ} \text{ km s}^{-1} \checkmark$ 1st mark is for calculating v
- d = 340 × 10^e l yr = 340 / 3.26 Mpc = 104 Mpc ✓ 2nd mark is for working out d in Mpc
- $H = 7.5 \times 10^{3} / 104 = 72 \text{ kms}^{-1} \text{ Mpc}^{-1} \checkmark$ 3rd mark is for calculating H in the correct unit.

3

(ii) Age of Universe = 1 / H 1st mark is for the equation $= 0.014 \times 10^{6} \times 3.26 \times 9.5 \times 10^{15} / 1000$

 2^{nd} is for the answer with working

= 4.3 × 10¹⁷ seconds

(= 13.6 billion years)

Unit consistent with calculation.

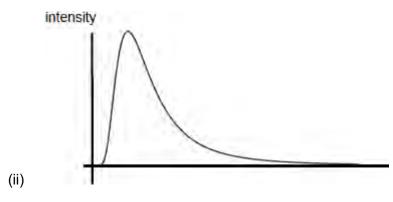
3ª is for a time unit consistent with their answer / working

[11]

3

M3. (a) (i) the brightness of a star as it would appear from a distance of 10 pc $\sqrt{1}$

(ii) Betelgeuse


Bellatrix is actually a lot brighter than Betelgeuse (the absolute magnitude is a lot more negative), but only appears to be a bit brighter (the apparent magnitude is only a little smaller) so Betelgeuse must be closer \checkmark

1

(b) (i) use of $\lambda_{max} T = 0.0029$

gives
$$\lambda_{max} = 0.0029/22\ 000\ \checkmark$$

= 1.32 × 10⁻⁷ (m) \checkmark

2

steeper LHS than RHS ✓

intensity goes towards zero as the wavelength goes to end of axis \checkmark

- (ii) helium ✓ 1
- (iii) temperature too low (for atmosphere of Betelgeuse to have hydrogen in n=2 state) ✓

[10]

3

1

4

3

M4.

- (a) (i) Segin: spectral class B is hottest (1)
 - (ii) Shedir: class K is closest towards red end (1)
 - (iii) Shedir: 2.2 is smallest value of apparent magnitude (1)
 - (iv) Achird: apparent magnitude lower (brighter) than absolute magnitude and they are equal when star is 10 pc away (1)

(b) (i) (use of $m - M = 5 \log(d/10)$ gives) $2.2 - (-4.6) = 5 \log^{\left(\frac{d}{10}\right)}$ (1)

(ii) (use of
$$\lambda_{max}T = 0.0029$$
 gives) $\lambda_{max} = \frac{0.0029}{12000} = 2.4(2) \times 10^{-7}$ m (1)

[7]

M5.

(a)

(i) P has the lowest peak wavelength (λ_{max}) (1) (since) $\lambda_{max}T$ = constant, lowest λ_{max} means highest T (1) [or P has highest peak intensity (1) intensity is power per unit area, or ref to Stefan's law (1)]

(ii) $\lambda_{max} = 300 \times 10^{-9} (m)$ (1) (use of $\lambda_{max} T = 0.0029$ gives) $T = 9.7 \times 10^{3} K$ (1) (9.67 × 10³ K)

max 3

- (b) (i) A and B (1)
 - (ii) light from the star passes through the atmosphere of the star (1) which contains hydrogen with electrons in *n* = 2 state (1) electrons in this state absorb certain energies and (hence) frequencies of light (1) the light is re-emitted in all directions, so that the intensity of these frequencies is reduced in any given direction, resulting in absorption lines (1)

max 4

[7]