M1.(a) It is not actually connected to $0V \checkmark$

OR

Operational amplifier has a very large open loop gain

The voltage between V₊ and V₋ inputs has to be zero [or tiny] otherwise will saturate \checkmark

2

2

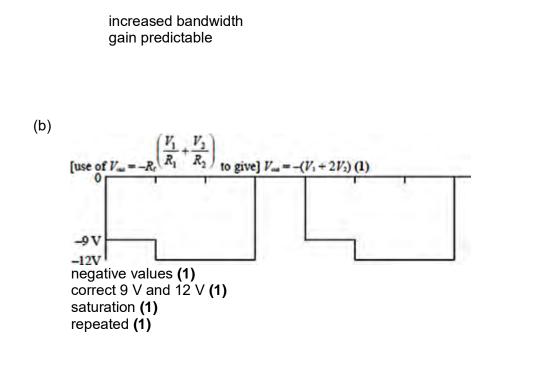
2

- (b) $V_{\text{OUT}} = -270 \text{ K} / 22 \text{ K x } \text{V}_{\text{IN}} = -12.3 \text{ V}_{\text{IN}}$ OR $V_{\text{IN}} = 50 \text{ x } 0.01 = 0.5 \text{ V } \checkmark$ $V_{\text{OUT}} = -12.3 \text{ x } 0.5 = -6.1 \text{ V } \checkmark$
- (c) At 122 °C V_{out} = 122 x 0.01 x 12.3 = 15.0 V ✓
 so any higher temp will give no further increase in V_{out} ✓ WTTE OR
 Max V_{IN} = 15.0 / 12.3 = 1.22 V ✓

Max input temperature = 1.22 / 0.01 = 122 °C 🖌

(d) Level is fixed by controlling the pd at the + input)
 OR
 Turns off at higher temperature if V at + terminal higher ✓
 Output of the circuit is determined by R_f / R_i(V2 – V1) ✓

When V1 = V2 the output changes from + to - (causing heater to switch off) \checkmark


[9]

3

M2.(a) (i) negative feedback: part or all of the output is fed back to the input 180° out of phase (1)

achieved through R_f (1)

(ii) greater stability less distortion any two (1) (1)

4

M3.(a) $I_a = \frac{1.2}{6(k\Omega)} = 0.2 \text{ mA (1)}$

 I_{b} = 0.3 mA and I_{c} = 0.6mA (1) correct direction of current shown (1)

- (b) current through $R_f = 1.1$ (mA) gives $V_{out} = 1.1 \times 10^{-3} \times 10 \times 10^3 = 11$ V (1) negative value (1)
- (c) V_{out} (22 V)> supply voltage [or saturated] (1) V_{out} = (-)15V (1)

[6]