M1.(a) $\quad V_{+}\left(=12 \times \frac{6}{9}\right)=8 \mathrm{~V}(1)$
(b) at $0^{\circ} \mathrm{C}, R_{\mathrm{t}}=100(\Omega)(1)$ $R_{1}=\left(2 \times R_{\mathrm{t}}\right)=200 \Omega(1)$
(c) (i) $\quad R_{2}=\left(\frac{12-2}{20 \times 10^{-3}}\right)$
$=500 \Omega(1)$
(ii) (use of $P=I^{2} R$ gives) $P=\left(20 \times 10^{-3}\right)^{2} \times 500(1)$

$$
=0.20 \mathrm{~W}(1)
$$

(allow C.E. for value of R_{2} from (i))
(d) 510Ω
(allow C.E. for value of R_{2} from (c)(i))

$$
\text { M2.(a) } \quad \begin{aligned}
V_{-}= & 12 \times \frac{30}{46}(1) \\
& =7.8 \mathrm{~V}(1)
\end{aligned}
$$

(b) (i) between $V_{\text {out }}$ and $0 \vee$ (1)
(or from +12 V to $V_{\text {out }}$)
correct direction and resistor (1)
(ii) (since $V_{\text {in }} V_{\text {out }}=-12 \mathrm{~V}(12 \mathrm{~V}$ across LED) (1) (or alternative)
(iii) voltage across $R=(12-2)=10(\mathrm{~V})(1)$
$10=25 \times 10^{-3} \times R$ gives $R=400 \Omega(1)$
(or alternatively $22=25 \times 10^{-3}$ to give $R=880 \Omega$)
(c) to switch LED voltage at $\mathrm{B}=7.8(\mathrm{~V})(1)$

$$
\begin{aligned}
R_{\mathrm{LOR}} \text { given by } 7.8 & =\frac{12 \times 47}{47+R} \text { or } \\
R_{\mathrm{LOR}} & =25 .(3) \mathrm{k} \Omega
\end{aligned}
$$

light level $=30$ lux (1)

M3.(a) high input impedance very large voltage gain any two (1) (1) low output impedance
(b) (i) circuit diagram to show: correct feedback and output (1) correct inputs (1)
(ii) $\quad R_{a} \geq 1 \mathrm{k} \Omega$ (1)
gives $R_{f}=150 \mathrm{k} \Omega(1)$
(c) (i) fraction of output fed back through R_{f} (1) is 180° out of phase with input (1)
(ii) increased stability or less distortion or controlled gain (1)
(iii) range of frequencies within which voltage gain does not fall by $1 / \sqrt{ } 2$ or power by $1 / 2$ (1)
(iv) bandwidth given by gain of $\frac{22}{\sqrt{2}}=16$ (1) (15.6) horizontal line at gain $=16$ and inside curve

Page 4

