M1.(a) (it takes) 130 J / this energy to raise (the temperature of) a mass of 1 kg (of lead) by 1 K / 1 °C (without changing its state) ✓

> 1 kg can be replaced with unit mass. Marks for 130J or energy. +1 kg or unit mass. +1 K or 1 °C. Condone the use of 1 °K

> > 1

(b) (using $Q = mc\Delta T + ml$) = 0.75 × 130 × (327.5 – 21) + 0.75 × 23000 ✓ (= 29884 + 17250) = 47134 🗸 = 4.7 × 10⁴ (J) ✓ For the first mark the two terms may appear separately i.e. they do not have to be added.

> Marks for substitution + answer + 2 sig figs (that can stand alone).

3

M2.(a) Appreciates *pV* should be constant for isothermal change (by working or (i) statement) $W = p\Delta V$ is TO Allow only products seen where are approximately 150 for 1 mark Penalise J as unit here M1 Demonstrates pV = constant using 2 points (on the line) set equal to each other or conclusion made or **shows** that for V doubling that *p* halves (worth 2 marks) need to see values for p and V Products should equal 150 to 2 sf Accept statement that products are slightly different so not quite isothermal Demonstrates pV = constant using 3 points (on the line) with conclusion

Need to see values for p and V

A1

Products should equal 150 to 2 sf Accept statement that products are slightly different so not quite isothermal

A1

3

(ii) Adiabatic <u>therefore</u> no heat transfer **or** Adiabatic <u>therefore</u> Q = 0

Work is done <u>by</u> gas <u>therefore</u> W is <u>negative</u> **or** Work is done <u>by</u> gas <u>therefore</u> energy is removed from the system

Β1

Β1

decreases **or** energy is removed from the system <u>therefore</u> internal energy of gas decreases or work done by the gas <u>so</u> internal energy decreases

 ΔU is negative therefore internal energy of gas

$$-\Delta U = -W \text{ or } \Delta U = -W$$

3

(iii) Uses pV/T = constant or uses pV=nRT or uses pV=NkTe.g. makes T subject or substitutes into an equation with p_A and V_A or p_c and V_c (condone use of n = 1) or $(pV)_A$ their $(pV)_c$ $V_a read off range$ $= 2.5 to 2.6 (\times 10^{-4})$ $p_A = 600 \times 10^3$ $V_c read off range$ $= 8.5 to 8.6 (\times 10^{-4})$ $p_c = 140 \times 10^3$

C1

Correct substitution of coordinates (inside range) into $\frac{(pV)_{\rm A}}{(pV)_{\rm c}}$ With consistent use of powers of 10

$(pV)_{\scriptscriptstyle A}$ range is 150 to 156 and $(pV)_{\scriptscriptstyle C}$ range is 119 to 120.4	
	C1
1.2(5) Allow range from 1.2 to 1.3	
Accept decimal fraction : 1	
	A1
Energy per large square = $10(J)$ or <u>states</u> that work done is equal to area under curve (between A and B) or energy per small square = $0.4(J)$ or square counting seen on correct area	
Must be clear that area represents energy either by subject of formula or use of units on 10 or 0.4	
W = area of a trapezium (with working)	
or $W = P_{mean} \times \Delta V$ or $W = 450 \times 10^3 \times 2.5 \times 10^{-4}$	
or W = area of a rectangle + area of a triangle (with working)	
	B1
Number of large squares = 10.5 to 11.5 seen and (W) = number of squares × area of one square (using numbers) Range = 105 to 115 (J) Or	
Number of small squares = 263 to 287 seen and (W) = number of squares × area of one square (using numbers) Range = 105 to 115 (J)	
States that actual work done would be lower because of curvature of line	
	B1

2

3

(c) (Total energy removed per s =) 4560 (J) or number of cycles per s = 40 or (Mass per second =) 114 ÷ 68400 in rearranged form or their energy ÷ (c ΔT) or their energy ÷ 68400

(b)

0.067 (kg) seen Allow 0.066 (kg) here or allow V / t = 1.67 × 10⁻³ ÷ 1100 or $(\frac{V}{t}) = \frac{E}{\rho \alpha \Delta \theta}$ and correct substitution seen

C1

A1

=
$$0.061 \times 10^{-3}$$
 or 6.06×10^{-5} (m³)

3

[14]

M3.B

M4.A

[1]

M5.(a) the energy required to change the state of a unit mass of water to steam / gas ✓ when at its boiling point temperature / 100°C / without a change in temperature) ✓

allow 1 kg in place of unit allow liquid to vapour / gas without reference to water don't allow 'evaporation' in first mark

2

 (b) (i) thermal energy given by copper block (= mcΔT) = 0.047 × 390 × (990 - 100) = 1.6 × 10⁴ (J) ✓ 2 sig figs ✓ can gain full marks without showing working a negative answer is not given credit sig fig mark stands alone (ii) thermal energy gained by water and copper container $(= mc\Delta T_{water} + mc\Delta T_{copper})$ $= 0.050 \times 4200 \times (100 - 84) + 0.020 \times 390 \times (100 - 84)$ or = 3500 (J) ✓ (3485 J) available heat energy (= 1.6 × 10^₄ – 3500) = 1.3 × 10^₄ (J) ✓ allow both 12000 J and 13000 J allow CE from (i) working must be shown for a CE take care in awarding full marks for the final answer missing out the copper container may result in the correct answer but not be worth any marks because of a physics error (3485 is a mark in itself) ignore sign of final answer in CE (many CE's should result in a negative answer)

(iii) (using Q = *ml*)

$$m = 1.3 \times 10^4 / 2.3 \times 10^6$$

= 0.0057 (kg) ✓
Allow 0.006 but not 0.0060 (kg)
allow CE from (ii)
answers between 0.0052 → 0.0057 kg resulting from use of
12000 and 13000 J

[7]

1

2

M6.(i) (heat supplied by glass = heat gained by cola) (use of $m_{g} c_{g} \Delta T_{g} = m_{c} c_{c} \Delta T_{c}$) 1st mark for RHS or LHS of substituted equation $0.250 \times 840 \times (30.0 - T_f) = 0.200 \times 4190 \times (T_f - 3.0)$ 2nd mark for 8.4°C $(210 \times 30 - 210 t_{\rm f} = 838 T_{\rm f} - 838 \times 3)$ $T_{\rm f} = 8.4(1)$ (°C) \checkmark Alternatives: 8°C is substituted into equation (on either side shown will get mark)√ resulting in 4620J~4190J 🗸 or 8°C substituted into LHS \checkmark (produces $\Delta T = 5.5$ °C and hence) = 8.5°C ~ 8°C 🗸

8°C substituted into RHS \checkmark (produces $\Delta T = 20°C$ and hence) = 10°C ~ 8°C \checkmark

(ii) (heat gained by ice = heat lost by glass + heat lost by cola) NB correct answer does not necessarily get full marks (heat gained by ice = $mc\Delta T + ml$) heat gained by ice = $m \times 4190 \times 3.0 + m \times 3.34 \times 10^{\circ}$ (heat gained by ice = $m \times 346600$) 3rd mark is only given if the previous 2 marks are awarded heat lost by glass + heat lost by cola = 0.250 × 840 × (8.41 − 3.0) + 0.200 × 4190 × (8.41 − 3.0) ✓ (= 5670 J) (especially look for $m \times 4190 \times 3.0$) the first two marks are given for the formation of the substituted equation not the calculated values $m (= 5670 / 346600) = 0.016 (kg) \checkmark$ if 8°C is used the final answer is 0.015 kg or (using cola returning to its original temperature) (heat supplied by glass = heat gained by ice) (heat gained by glass = $0.250 \times 840 \times (30.0 - 3.0)$) heat gained by glass = 5670 (J) ✓ (heat used by ice = $mc\Delta T + ml$) heat used by ice = $m(4190 \times 3.0 + 3.34 \times 10^5)$ \checkmark (= m(346600))

 $\Delta T = \left(\frac{\Delta Q}{mc}\right) = \frac{8.5 \times 10^3}{4200 \times 0.12} \checkmark$

[5]

3

2

2

M7.

17 К 🗸

(a)

(b)
$$\begin{pmatrix} \Delta T \\ \Delta t \\ \hline \Delta t \\ \hline mc \\ \end{bmatrix} = \frac{100 - 26}{\Delta t} = \frac{8.5 \times 10^3}{0.41 \times 4200}$$
$$\checkmark t = 15 \text{ s } \checkmark$$

2

[4]