M1.(a) (it takes) $130 \mathrm{~J} /$ this energy to raise (the temperature of) a mass of 1 kg (of lead) by 1 $\mathrm{K} / 1^{\circ} \mathrm{C}$ (without changing its state)

1 kg can be replaced with unit mass.
Marks for 130J or energy.
+1 kg or unit mass.
+1 K or $1^{\circ} \mathrm{C}$.
Condone the use of $1^{\circ} \mathrm{K}$

M2.(a) (i) Appreciates $p V$ should be constant for isothermal change (by working or statement) $W=p \Delta V$ is TO

Allow only products seen where are
approximately 150 for 1 mark
Penalise J as unit here

Demonstrates $p V=$ constant using 2 points (on the line) set equal to each other or conclusion made or shows that for V doubling that p halves (worth 2 marks) need to see values for p and V

Products should equal 150 to 2 sf Accept statement that products are slightly different so not quite isothermal

Demonstrates $p V=$ constant using 3 points (on the line) with conclusion Need to see values for p and V

Products should equal 150 to 2 sf
Accept statement that products are slightly different so not quite isothermal
(ii) Adiabatic therefore no heat transfer or Adiabatic therefore $Q=0$

Work is done by gas therefore W is negative or Work is done by gas therefore energy is removed from the system
ΔU is negative therefore internal energy of gas decreases or energy is removed from the system therefore internal energy of gas decreases or work done by the gas so internal energy decreases

Allow

$$
-\Delta U=-W \text { or } \Delta U=-W
$$

(iii) Uses $p V / T=$ constant or uses $p V=n R T$ or uses $p V=N k T$
e.g. makes T subject or substitutes into an equation with p_{A} and $V_{A} \circ$ or p_{C} and V_{C} (condone use of $\mathrm{n}=1$) or their $\frac{(p V)_{\mathrm{A}}}{(p V)_{c}}$
V_{a} read off range
$=2.5$ to $2.6\left(\times 10^{-4}\right)$
$p_{A}=600 \times 10^{3}$
V_{c} read off range
$=8.5$ to $8.6\left(\times 10^{-4}\right)$
$p_{C}=140 \times 10^{3}$

C1

Correct substitution of coordinates (inside range) into $\frac{(p V)_{A}}{(p V)_{\varepsilon}}$
With consistent use of powers of 10
$(p V)_{A}$ range is 150 to 156 and $(p V)_{C}$ range is 119 to 120.4

C1
1.2(5) Allow range from 1.2 to 1.3

Accept decimal fraction : 1
(b) Energy per large square $=10(\mathrm{~J})$ or states that work done is equal to area under curve (between A and B)
or energy per small square $=0.4(\mathrm{~J})$
or square counting seen on correct area
Must be clear that area represents energy either by subject of formula or use of units on 10 or 0.4

Alternative:
$W=$ area of a trapezium
(with working)
or $W=P_{\text {mean }} \times \Delta V$ or
$W=450 \times 10^{3} \times 2.5 \times 10^{-4}$
or $W=$ area of a rectangle + area of a triangle (with working)
B1
Number of large squares $=10.5$ to 11.5 seen and $(W)=$ number of squares \times area of one square (using numbers)
Range = 105 to 115 (J)
Or
Number of small squares $=263$ to 287 seen and $(W)=$ number of squares \times area of one square (using numbers) Range $=105$ to 115 (J)

States that actual work done would be lower because of curvature of line
(c) (Total energy removed per s =) 4560 (J)
or number of cycles per $s=40$
or (Mass per second =) $114 \div 68400$ in rearranged form
or their energy $\div(c \Delta T)$ or their energy $\div 68400$
$0.067(\mathrm{~kg})$ seen Allow $0.066(\mathrm{~kg})$ here
or allow $\mathrm{V} / \mathrm{t}=1.67 \times 10^{-3} \div 1100$
$\operatorname{or}\left(\frac{V}{t}\right)=\frac{E}{\rho c \Delta \theta}$ and correct substitution seen
Condone $E=114(\mathrm{~J})$ or temperature $=291(\mathrm{~K})$
C1
$=0.061 \times 10^{-3}$ or $6.06 \times 10^{-5}\left(\mathrm{~m}^{3}\right)$

M3.B

M4.A

M5.(a) the energy required to change the state of a unit mass of water to steam / gas \checkmark when at its boiling point temperature $/ 100^{\circ} \mathrm{C} /$ without a change in temperature)
allow 1 kg in place of unit allow liquid to vapour / gas without reference to water don't allow 'evaporation' in first mark
(b) (i) thermal energy given by copper block ($=m c \Delta T$)
$=0.047 \times 390 \times(990-100)$
$=1.6 \times 10^{4}(\mathrm{~J})$
2 sig figs
can gain full marks without showing working a negative answer is not given credit
sig fig mark stands alone
(ii) thermal energy gained by water and copper container
($=m c \Delta T_{\text {waier }}+m c \Delta T_{\text {coppere }}$)
$=0.050 \times 4200 \times(100-84)+0.020 \times 390 \times(100-84)$
or
$=3500(\mathrm{~J}) \downarrow(3485 \mathrm{~J})$
available heat energy $\left(=1.6 \times 10^{4}-3500\right)=1.3 \times 10^{4}(\mathrm{~J})$
allow both 12000 J and 13000 J
allow CE from (i)
working must be shown for a CE take care in awarding full marks for the final answer missing out the copper container may result in the correct answer but not be worth any marks because of a physics error
(3485 is a mark in itself) ignore sign of final answer in CE (many CE's should result in a negative answer)
(iii) (using Q $=m l$)
$m=1.3 \times 10^{4} / 2.3 \times 10^{6}$
$=0.0057(\mathrm{~kg}) \downarrow$
Allow 0.006 but not 0.0060 (kg)
allow CE from (ii) answers between $0.0052 \rightarrow 0.0057 \mathrm{~kg}$ resulting from use of 12000 and 13000 J

M6.(i) (heat supplied by glass = heat gained by cola)
(use of $m_{\mathrm{g}} \mathrm{C}_{\mathrm{g}} \Delta T_{\mathrm{g}}=m_{\mathrm{c}} \mathrm{C}_{\mathrm{c}} \Delta T_{\mathrm{c}}$)
${ }^{1 \text { st }}$ mark for RHS or LHS of substituted equation
$0.250 \times 840 \times\left(30.0-T_{t}\right)=0.200 \times 4190 \times\left(T_{t}-3.0\right)$
$2^{\text {nd }}$ mark for $8.4^{\circ} \mathrm{C}$
$\left(210 \times 30-210 t_{t}=838 T_{t}-838 \times 3\right)$
$T_{\mathrm{t}}=8.4(1)$
$\left({ }^{\circ} \mathrm{C}\right)$
Alternatives:
$8^{\circ} \mathrm{C}$ is substituted into equation (on either side shown will get mark) \checkmark
resulting in 4620J~4190J \checkmark
or
$8^{\circ} \mathrm{C}$ substituted into LHS \checkmark (produces $\Delta T=5.5^{\circ} \mathrm{C}$ and hence)
$=8.5^{\circ} \mathrm{C} \sim 8^{\circ} \mathrm{C} \checkmark$
$8^{\circ} \mathrm{C}$ substituted into $R H S \checkmark$
(produces $\Delta T=20^{\circ} \mathrm{C}$ and hence)
$=10^{\circ} \mathrm{C} \sim 8^{\circ} \mathrm{C}$
(ii) (heat gained by ice = heat lost by glass + heat lost by cola)

NB correct answer does not necessarily get full marks
(heat gained by ice $=m c \Delta T+m l$)
heat gained by ice $=m \times 4190 \times 3.0+m \times 3.34 \times 10^{5} \checkmark$
(heat gained by ice $=m \times 346600$)
$3^{d d}$ mark is only given if the previous 2 marks are awarded
heat lost by glass + heat lost by cola $=0.250 \times 840 \times(8.41-3.0)+0.200 \times 4190 \times(8.41-3.0)$ (= 5670 J)
(especially look for $m \times 4190 \times 3.0$)
the first two marks are given for the formation of the substituted equation not the calculated values
$m(=5670 / 346600)=0.016(\mathrm{~kg}) \checkmark$
if $8^{\circ} \mathrm{C}$ is used the final answer is 0.015 kg
or (using cola returning to its original temperature)
(heat supplied by glass = heat gained by ice)
(heat gained by glass $=0.250 \times 840 \times(30.0-3.0))$
heat gained by glass $=5670(\mathrm{~J})$
(heat used by ice $=m c \Delta T+m l$)
heat used by ice $=m\left(4190 \times 3.0+3.34 \times 10^{5}\right) \quad \checkmark(=m(346600))$
$m(=5670 / 346600)=0.016(\mathrm{~kg})$

M7.
 (a) $\Delta T=\left(\frac{\Delta Q}{m c}=\right) \frac{8.5 \times 10^{3}}{4200 \times 0.12}$

(b) $\left(\frac{\Delta T}{\Delta t}=\frac{\frac{\Delta Q}{\Delta t}}{m c}\right)=\frac{100-26}{\Delta t}=\frac{8.5 \times 10^{3}}{0.41 \times 4200}$

$$
t=15 \mathrm{~s} \quad \checkmark
$$

