Q1.(a) Lead has a specific heat capacity of $130 \mathrm{~J} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}$.
Explain what is meant by this statement.
\qquad
\qquad
\qquad
\qquad
(b) Lead of mass 0.75 kg is heated from $21^{\circ} \mathrm{C}$ to its melting point and continues to be heated until it has all melted.

Calculate how much energy is supplied to the lead.
Give your answer to an appropriate number of significant figures.
melting point of lead $=327.5^{\circ} \mathrm{C}$
specific latent heat of fusion of lead $=23000 \mathrm{~J} \mathrm{~kg}^{-1}$
energy supplied ... J

Q2.The Carnot cycle is the most efficient theoretical cycle of changes for a fixed mass of gas in a heat engine.
The graph below shows the pressure-volume $(p-V)$ diagram for a gas undergoing a Carnot cycle of changes ABCDA.

(a) (i) Show that during the change $\mathbf{A B}$ the gas undergoes an isothermal change.
(ii) Explain how the first law of thermodynamics applies to the gas in the change BC.
\qquad
\qquad
\qquad
\qquad
\qquad
(iii) Determine the ratio $\frac{T_{A}}{T_{C}}$,
where T_{A} is the temperature of the gas at \mathbf{A} and T_{C} is the temperature of the gas at \mathbf{C}.
ratio \qquad
(b) Show that the work done during the change $\mathbf{A B}$ is about 110 J .
(c) When running at a constant temperature, one practical engine goes through 2400 cycles every minute. In one complete cycle of this engine, 114 J of energy has to be removed by a coolant so that the engine runs at a constant temperature. The temperature of the coolant rises by $18^{\circ} \mathrm{C}$ as it passes through the engine.

Calculate the volume of the coolant that flows through the engine in one second.
specific heat capacity of coolant $=3.8 \times 10^{3} \mathrm{~J} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}$ density of coolant $=1.1 \times 10^{3} \mathrm{~kg} \mathrm{~m}^{-3}$

Q3.A liquid flows continuously through a chamber that contains an electric heater. When the steady state is reached, the liquid leaving the chamber is at a higher temperature than the liquid entering the chamber. The difference in temperature is Δt.

Which of the following will increase Δt with no other change?

A Increasing the volume flow rate of the liquid \square

B Changing the liquid to one with a lower specific heat capacity

C Using a heating element with a higher resistance \square

D Changing the liquid to one that has a higher density
(Total 1 mark)

Q4.The temperature of a hot liquid in a container falls at a rate of 2 K per minute just before it begins to solidify. The temperature then remains steady for 20 minutes by which time all the liquid has all solidified.

What is the quantity $\frac{\text { Specific heat capacity of the liquid }}{\text { Specific latent heat of fusion }}$?

A $\quad \frac{1}{40} \mathrm{~K}^{-1}$

B $\quad \frac{1}{10} \mathrm{~K}^{-1}$

C $10 \mathrm{~K}^{-1}$

D $\quad 40 \mathrm{~K}^{-1}$

(Total 1 mark)

Q5.(a) Define the specific latent heat of vaporisation of water.
\qquad
\qquad
\qquad
\qquad
(b) An insulated copper can of mass 20 g contains 50 g of water both at a temperature of $84{ }^{\circ} \mathrm{C}$. A block of copper of mass 47 g at a temperature of $990^{\circ} \mathrm{C}$ is lowered into the water as shown in the figure below. As a result, the temperature of the can and its contents reaches $100^{\circ} \mathrm{C}$ and some of the water turns to steam.
specific heat capacity of copper $=390 \mathrm{~J}$ kgsup class="xsmall">-1 Ksup class="xsmall">-1
specific heat capacity of water $=4200 \mathrm{~J}$ kgsup class="xsmall">-1 Ksup class="xsmall">-1
specific latent heat of vaporisation of water $=2.3 \times 10^{6} \mathrm{~J}$ kgsup class="xsmall">-1

47 g copper at $990^{\circ} \mathrm{C}$

Before placement

After placement
(i) Calculate how much thermal energy is transferred from the copper block as it cools to $100^{\circ} \mathrm{C}$.
Give your answer to an appropriate number of significant figures.
thermal energy transferred .. J
(ii) Calculate how much of this thermal energy is available to make steam. Assume no heat is lost to the surroundings.
available thermal energy \qquad J
(iii) Calculate the maximum mass of steam that may be produced.

Q6.A cola drink of mass 0.200 kg at a temperature of $3.0^{\circ} \mathrm{C}$ is poured into a glass beaker. The beaker has a mass of 0.250 kg and is initially at a temperature of $30.0^{\circ} \mathrm{C}$.

> specific heat capacity of glass $=840 \mathrm{~J} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}$
> specific heat capacity of cola $=4190 \mathrm{~J} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}$
(i) Show that the final temperature, T_{f}, of the cola drink is about $8{ }^{\circ} \mathrm{C}$ when it reaches thermal equilibrium with the beaker.
Assume no heat is gained from or lost to the surroundings.
(ii) The cola drink and beaker are cooled from T_{f} to a temperature of $3.0^{\circ} \mathrm{C}$ by adding ice at a temperature of $0^{\circ} \mathrm{C}$.
Calculate the mass of ice added.
Assume no heat is gained from or lost to the surroundings.

> specific heat capacity of water $=4190 \mathrm{~J} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}$ specific latent heat of fusion of ice $=3.34 \times 10^{5} \mathrm{~J} \mathrm{~kg}^{-1}$

Q7. An electrical immersion heater supplies 8.5 kJ of energy every second. Water flows through the heater at a rate of $0.12 \mathrm{~kg} \mathrm{~s}^{-1}$ as shown in the figure below.

(a) Assuming all the energy is transferred to the water, calculate the rise in temperature of the water as it flows through the heater.

$$
\text { specific heat capacity of water }=4200 \mathrm{~J} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}
$$

answer = .. K
(b) The water suddenly stops flowing at the instant when its average temperature is 26 ${ }^{\circ} \mathrm{C}$.
The mass of water trapped in the heater is 0.41 kg .
Calculate the time taken for the water to reach $100^{\circ} \mathrm{C}$ if the immersion heater continues supplying energy at the same rate.

