M1. (a)	(Constructive) interference / superposition occurs or			
	Waves arrive in phase so produce maximum intensity Diffraction alone is not enough			
		B1	1	
	 b) Correct substitution of numerical value in h / mv irrespective of powers of 10 	`		
,		, C1		
	2.1 × 10 ⁻¹¹ (m)	O1		
		A1	2	
			_	[3]
M2 .A				[1]
M3. C				[1]
M4. D				[41]
				[1]
M5. B				
				[1]

M6.(a) (electron) diffraction / interference / superposition ✓ Accept derfraction

1

(b) (use of $\lambda = h / mv$) $\lambda = 6.63 \times 10^{-34} / (9.11 \times 10^{-31} \times 2.5 \times 10^{-5})$ $\lambda = 2.9 \times 10^{-9} \text{m} \checkmark \checkmark (2 \text{ sig figs.})$

3

 $v = 2.5 \times 10^{5} / 207$ (c) $v = 1200 \text{ m s}^{-1} \checkmark$ OR use $v = h / m\lambda$ with CE from part (b) Answer alone gets 2 marks

[6]

2

- minimum energy required \checkmark M7. (a) to remove electron from metal (surface) OR cadmium OR the material ✓
 - (ii) photons have energy dependent on frequency OR energy of photons constant one to one interaction between photon and electron 🗸 Max KE = photon energy − work function in words or symbols ✓ more energy required to remove deeper electrons ✓

4

(use of $hf = \emptyset + E_{k(max)}$) (iii) $6.63 \times 10^{-34} \times f = 4.07 \times 1.60 \times 10^{-19} \checkmark + 3.51 \times 10^{-20} \checkmark$ $f = 1.04 \times 10^{15}$ (Hz) OR 1.03×10^{15} (Hz) $\sqrt{\ }$ (3 sig figs)

4

	(b) theory makes predictions tested ✓ by repeatable/checked by other scientists/peer reviewed (experiments) OR new evidence that is repeatable/checked by other scientists/peer reviewed√				
				2	[12]
M8.		(a) passed them between oberged plates / peer charged object			
IVIO.		(a) passed them between charged plates / near charged object			
		or			
		use magnetic field			
			M1		
		correct deviation			
		or			
		circular path in direction indicating negative charge			
			A1		
				2	
	(b)	diffraction			
	(D)	difficulti			
			B1		
		electron is behaving as a wave			
			B1		
				2	
	(c)	(i) $p = h/\lambda$ or substitution of wavelength into $\lambda = h/p$ or $\lambda = h/\lambda$	mv		
	(0)				
			C1		
		$2.76 \text{ or } 2.8 \times 10^{-19}$			
			A1		
		kg m s ⁻¹ / N s / J s m ⁻¹ / J Hz ⁻¹ m ⁻¹			
			D1		
			B1	3	

(ii) $E_k = p^2/2m$ or quotes p = mv **and** $E_k = \frac{1}{2} mv^2$ (symbols or numbers)

C1

 $4.1 \text{ or } 4.2 \times 10^{-8} \text{ (J)}$

A1

2

[9]

M9. (a) (i) when electrons/atoms are in their lowest/minimum energy (state) or most stable (state) they (are in their ground state) √

1

(ii) in either case an electron receives (exactly the right amount of) energy ✓
 excitation promotes an (orbital) electron to a higher energy/up a level ✓
 ionisation occurs (when an electron receives enough energy) to leave the atom ✓

3

(b) electrons occupy discrete energy levels ✓
and need to absorb an exact amount of/enough energy to move to a higher level ✓
photons need to have certain frequency to provide this energy or e = hf ✓
energy required is the same for a particular atom or have different energy levels ✓
all energy of photon absorbed ✓
in 1 to 1 interaction or clear a/the photon and an/the electrons ✓

4

(c) energy = $13.6 \times 1.60 \times 10^{-19} = 2.176 \times 10^{-18}$ (J) \checkmark $hf = 2.176 \times 10^{-18} \checkmark$

$$f = 2.176 \times 10^{-18} \div 6.63 \times 10^{-34} = 3.28 \times 10^{15} \text{ Hz} \checkmark 3 \text{ sfs} \checkmark$$

[12]

4

M10. correct substitution into formula, condone power of ten error

C1

 8.7×10^{-10} (m)

Α1

[2]

M11. (a) (i) *hf* is energy available/received **or** same energy from photons **(1)** energy required to remove the electron varies (hence kinetic

energy of electrons will vary) (1)

2

(ii) (work function is the) minimum energy needed to release an electron (1)(or not enough energy to release electron)

below a certain frequency energy of **photon** is less than work function **or** energy of **photon** correctly related to f (1)

2

(iii) joule (1) (accept eV)

1

(b) (i) (use of E = hf) energy = $6.63 \times 10^{-34} \times 1.5 \times 10^{15}$ (1) energy = 9.9×10^{-19} (J) (1)

2

(ii) number of photons per second = $3.0 \times 10^{-10}/9.9 \times 10^{-19}$ (1) number of photons per second = 3.0×10^{8} (1)

2

(c) (i) (time taken = $6.8 \times 10^{-19}/3 \times 10^{-22}$) time taken = 2.3×10^3 s (1)

1

2

(ii) light travels as particles/ photons (1) (or has a particle(like) nature)

(which transfer) energy in discrete packets (1)

- **or** 1 to 1 interaction
- or theory rejected/modified (in light of validated evidence)

[12]