M1.(a) (i) Appreciation that one component changes speed while the other component at right angles does not

When entering a denser medium a corpuscle / light accelerates or its velocity / momentum increases perpendicular to the interface

There is a (short range) attractive force between light corpuscle and the (denser) material

Not allowed:
Attraction due to opposite charges
Force making them move faster is not enough
Accelerate in medium
Not gains energy
(iii) A corpuscular theory predicts only two (bright) lines / high intensity patches of light whereas a wave theory predicts many fringes

Corpuscles can only travel in straight lines
or
waves can produce fringes because (diffract and) interfere / superpose / arrive in and out of phase / have different path differences \checkmark

Need to describe the patterns ie not just interference fringes are seen for the first mark
(b) Substitutes data in photon wavelength $=h c / E$; Allow for substitution with no conversion to $J \checkmark$
$2.48 \times 10^{-10} \mathrm{~m} \checkmark$
For electron: Substitution in $\lambda=\frac{h}{\sqrt{2 m E}}$
2.48×10^{-10} (or their λ)

$$
=6.6 \times 10^{-34} /\left(2 \times 9.11 \times 10^{-31} \times 1.6 \times 10^{-19} V\right)^{1 / 2}
$$

No conversion to J gives $\lambda \approx 4 \times 10^{-29}$ and $V \approx 9 \times 10^{38} \mathrm{~V}$)

$$
\begin{array}{r}
\left.V=24(.4) \vee \checkmark=1.49 \times 10^{-18} / \text { (their } \lambda\right)^{2} \checkmark \\
\text { Allow small rounding errors in } d p
\end{array}
$$

May calculate v using $v=h / m \lambda$ then substitution in $V=1 / 2 m v^{2} /$ e \checkmark (for third mark)

M2.(a) (i) wavelength $=\frac{h}{m v}$
$=\frac{6.63 \times 10^{-34}}{9.11 \times 10^{-31} \times 1.2 \times 10^{3}}(1)\left(=6.1 \times 10^{-7} \mathrm{~m}\right)$
(ii) charge (= current \times time $\left.=4.8 \times 10^{-13} \times 1.0 \times 10^{-3}\right)=4.8 \times 10^{-16} \mathrm{C}(1)$
number of electrons per fringe $=\frac{4.8 \times 10^{-16}}{\left(1.6 \times 10^{-19} \times 6\right)}=500(1)$
(b) (i) same (1)
(ii) interference fringes would be further apart (1) at twice the spacing (1)
as the wavelength would be doubled (1)

$$
\text { because } \lambda \propto \frac{1}{\text { speed }}\left[\text { or } \propto \frac{1}{\text { momentum }}\right]_{(1)}
$$

(c) $f\left(=\frac{c}{\lambda}\right)=\frac{300 \times 10^{8}}{6.1 \times 10^{-7}}$
$=4.9 \times 10^{14} \mathrm{~Hz}(1)$

