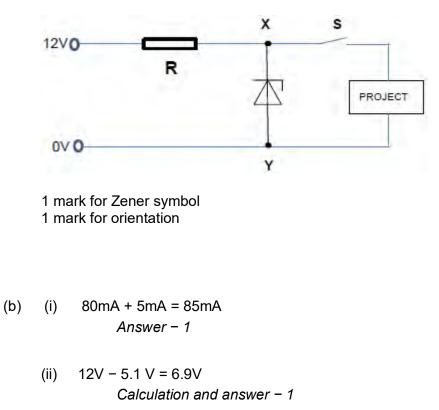
M1.(a)
$$R = \frac{(15-10)}{110 \times 10^{-3}}$$
 (1)
= 45(.5) Ω (1)

2

(b) (use of $P = I^2 R$ gives) $P = (110 \times 10^{-3})^2 \times 45$ (1) = 0.54(5) W (1) (allow C.E. for value of *R* from (a)


2

2

(c) 43 (Ω) (1)
 (allow C.E. for value of *R* from (a)
 go to lower resistor to ensure current through zener is > 10 mA (1)

[6]

M2.(a)

2

1

(iii) R = 6.9V / 85mA = 81Ω Calculation and answer – 2	2
(c) (i) P = V ² / RP = (6.9 × 6.9) / 75P = 0.64W Hence P is approx. 0.6W <i>Calculation and answer</i> − 2	2
(ii) $I = V / R$ $I = 6.9 / 75$ $I = 92mA$ Calculation and answer – 2	² [10]
M3. (a) 10mA + 88mA = 98mA ✓ ; V across resistor = 4.4-2.7 = 1.7V ✓ ; R=1.7 / 0.094 17.3Ω ✓	8 √ = 4
(b) 98mA √	1
(c) $P = I.V = 0.098 \times 2.7 \checkmark = 0.265W \checkmark$; use $0.5W \checkmark$	3
 (d) Voltage across R will increase ✓, so current through R will increase. ✓ current through zener will increase ✓ 	3

3 [11]

1

1

M4.(a) (i) zener diode√

- (ii) 4.7V✓
- (iii) reverse ✓ 1

(b) (i)
$$5 + 100 = 105 \text{mA} \checkmark$$

(ii) 10 - 4.7 = 5.3V ✓ 1

(iii)
$$5.3 \div 0.105 \checkmark = 50.5 \Omega \checkmark$$
 2

(iv)
$$47\Omega \checkmark$$
 1

(c) (i)
$$14.4-4.7 = 9.7 \forall \checkmark \quad 9.7 \div 33 = 294 \text{mA}\checkmark$$

1 [11]