$$
\text { M1.(a) } \begin{align*}
R & =\frac{(15-10)}{110 \times 10^{-3}} \tag{1}\\
& =45(.5) \Omega(1)
\end{align*}
$$

(b) (use of $P=I^{2} R$ gives) $\quad P=\left(110 \times 10^{-3}\right)^{2} \times 45(1)$

$$
=0.54(5) W(1)
$$

(allow C.E. for value of R from (a)
(c) $43(\Omega)(1)$
(allow C.E. for value of R from (a)
go to lower resistor to ensure current through zener is > 10 mA (1)

M2.(a)

1 mark for Zener symbol
1 mark for orientation
(b) (i) $80 \mathrm{~mA}+5 \mathrm{~mA}=85 \mathrm{~mA}$

$$
\text { Answer - } 1
$$

(ii) $12 \mathrm{~V}-5.1 \mathrm{~V}=6.9 \mathrm{~V}$

Calculation and answer - 1
(iii) $R=6.9 \mathrm{~V} / 85 \mathrm{~mA}=81 \Omega$

Calculation and answer - 2
(c) (i) $\mathrm{P}=\mathrm{V}^{2} / \mathrm{RP}=(6.9 \times 6.9) / 75 \mathrm{P}=0.64 \mathrm{~W}$

Hence P is approx. 0.6 W
Calculation and answer-2
(ii) $\mathrm{I}=\mathrm{V} / \mathrm{R} \quad \mathrm{I}=6.9 / 75 \quad \mathrm{I}=92 \mathrm{~mA}$

Calculation and answer - 2

M3.(a) $10 \mathrm{~mA}+88 \mathrm{~mA}=98 \mathrm{~mA} \checkmark ; \mathrm{V}$ across resistor $=4.4-2.7=1.7 \mathrm{~V} \checkmark ; \quad \mathrm{R}=1.7 / 0.098 \quad \checkmark=$ $17.3 \Omega \checkmark$
(b) $98 \mathrm{~mA} \checkmark$
(c) $P=I . V=0.098 \times 2.7 \checkmark=0.265 \mathrm{~W} \checkmark$; use $0.5 \mathrm{~W} \checkmark$
(d) Voltage across R will increase \checkmark, so current through R will increase. current through zener will increase \checkmark

M4.(a) (i) zener diode \checkmark
(ii) $4.7 \vee \checkmark$
(iii) reverse $\sqrt{ }$
(b) (i) $5+100=105 \mathrm{~mA} \checkmark$
(ii) $10-4.7=5.3 \mathrm{~V} \checkmark$
(iii) $5.3 \div 0.105 \checkmark=50.5 \Omega \checkmark$
(iv) $47 \Omega \checkmark$
(c) (i) $14.4-4.7=9.7 \vee \checkmark \quad 9.7 \div 33=294 \mathrm{~mA} \checkmark$
(ii) $4.7 \times 0.294=1.38 \mathrm{~W} \checkmark$

