

GCSE Biology

Cell Division

Question Paper

Time available: 50 minutes Marks available: 43 marks

1. This question is about the cell cycle.
(a) Chromosomes are copied during the cell cycle.

Where are chromosomes found?
Tick one box.

(b) What is the name of a section of a chromosome that controls a characteristic?
\qquad

Figure 1 shows information about the cell cycle.

Figure 1

(c) Which stage of the cell cycle in Figure 1 takes the most time?

Tick one box.

Cell growth

Copying of chromosomes

Mitosis

(d) During mitosis cells need extra energy.

Which cell structures provide most of this energy?
Tick one box.

(e) The cell cycle in Figure 1 takes two hours in total.

The cell growth stage takes 45 minutes.
Calculate the time taken for mitosis.
\qquad
\qquad
\qquad
\qquad
Time $=$ \qquad minutes

Figure 2 shows some cells in different stages of the cell cycle.

(f) Which cell is not dividing by mitosis

Tick one box.

(g) Cell E in Figure 2 contains 8 chromosomes.

Cell E divides by mitosis.
How many chromosomes will each new cell contain?
Tick one box.

2 \square

4 \square

8 \square
\square
(h) Why is mitosis important in living organisms?

Tick one box.

To produce gametes

To produce variation

To release energy

To repair tissues

2.

Figure 1 shows photographs of some animal cells at different stages during the cell cycle. CCESS
Figure 1

B

C

A © Ed Reschke/Photolibrary/Getty Images
B © Ed Reschke/Oxford Scientific/Getty Images C © Ed Reschke/Photolibrary/Getty Images
(a) Which photograph in Figure 1 shows a cell that is not going through mitosis?

Tick one box.
A \square
B \square
C \square
(b) Describe what is happening in photograph \mathbf{A}.
\qquad
\qquad
\qquad
\qquad
\qquad
(c) A student wanted to find out more about the cell cycle.

The student made a slide of an onion root tip.
She counted the number of cells in each stage of the cell cycle in one field of view.
The table below shows the results.

		Stages in the cell cycle				Total
	Non-dividing cells	Stage 1	Stage 2	Stage 3	Stage 4	
Number of cells	20	9	4	2	1	36

Each stage of the cell cycle takes a different amount of time.
Which stage is the fastest in the cell cycle?
Give a reason for your answer.
Stage \qquad
Reason \qquad
\qquad
(d) The cell cycle in an onion root tip cell takes 16 hours.

Calculate the length of time Stage 2 lasts in a typical cell.

Give your answer to 2 significant figures.
\qquad
\qquad
\qquad
\qquad
Time in Stage $2=$ \qquad minutes
(e) Bacteria such as Escherichia coli undergo cell division similar to mitosis.

Figure 2 shows a growth curve for E. coli grown in a nutrient broth.
Figure 2

What type of cell division causes the change in number of E. coli cells at \mathbf{P} ?
\qquad
(f) Suggest why the number of cells levels out at \mathbf{Q}.
\qquad
\qquad
\qquad
\qquad
\qquad
3. Stem cells can be collected from human embryos and from adult bone marrow. Stem cells can develop into different types of cell.

The table gives information about using these two types of stem cell to treat patients.
www.accesstuition.com

Stem cells from human embryos	Stem cells from adult bone marrow
It costs £5000 to collect a few cells.	It costs $£ 1000$ to collect many cells.
There are ethical issues in using embryo stem cells.	Adults give permission for their own bone marrow to be collected.
The stem cells can develop into most other types of cell.	The stem cells can develop into only a few types of cell.
Each stem cell divides every 30 minutes.	Each stem cell divides every four hours.
There is a low chance of a patient's immune system rejecting the cells.	There is a high chance of a patient's immune system rejecting the cells.
More research is needed into the use of these stem cells.	Use of these stem cells is considered to be a safe procedure.

Scientists are planning a new way of treating a disease, using stem cells.
Use only the information above to answer these questions.
(a) Give three advantages of using stem cells from embryos instead of from adult bone marrow.

1. \qquad
2. \qquad
3. \qquad
(b) Give three advantages of using stem cells from adult bone marrow instead of from embryos.
4. \qquad
5. \qquad
6. \qquad
7. (a) How many pairs of chromosomes are there in a body cell of a human baby?
(b) Place the following in order of size, starting with the smallest, by writing numbers 1 - 4 in the boxes underneath the words.
chromosome
nucleus
gene
cell

\square

(c) For a baby to grow, its cells must develop in a number of ways.

Explain how each of the following is part of the growth process of a baby.
(i) Cell enlargement
\qquad
(ii) The process of cell division by mitosis
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(d) Why is cell specialisation (differentiation) important for the development and growth of a healthy baby from a fertilised egg?
\qquad
\qquad
5. Figure 1 shows a human cheek cell viewed under a light microscope.

Figure 1

(a) Label the nucleus and cell membrane on Figure 1.
(b) Cheek cells are a type of body cell.

Body cells grow through cell division.
What is the name of this type of cell division?

Tick one box.

Differentiation

Mitosis

Specialisation

(c) Ribosomes and mitochondria are not shown in Figure 1.

What type of microscope is needed to see ribosomes and mitochondria?
\qquad
(d) What is the advantage of using the type of microscope you named in part (c)?

Tick one box.

Cheaper

Higher magnification

Lower resolution \square
(e) The cheek cell in Figure 2 is magnified 250 times.

The width of the cell is shown by the line \mathbf{D} to \mathbf{E}.
Figure 2

Calculate the width of the cheek cell in micrometres ($\mu \mathrm{m}$).
Complete the following steps.
Measure the width of the cell using a ruler \qquad mm

Use the equation to work out the real width of the cell in mm:
real size $=\frac{\text { image size }}{\text { magnification }}$ \qquad mm

Convert mm to $\mu \mathrm{m}$ \qquad $\mu \mathrm{m}$
(f) A red blood cell is $8 \mu \mathrm{~m}$ in diameter.

A bacterial cell is 40 times smaller.

Calculate the diameter of the bacterial cell.

Tick one box.

