

GCSE Biology

Adaptation

Mark Scheme

Time available: 55 minutes Marks available: 50 marks

1. (a) large number - more representative and so more valid (mean can be calculated) allow more reliable
random - avoid bias
(b) correct figures in table:

19
9
4
1
(c) all bars plotted correctly
allow ecf from the table
(d) any three from:

- much overlap of values between the 2 shores
sheltered shore:
accept converse for exposed shore
- wider range or use of figures - e.g. approx 0.26 to 0.70 cf 0.21 to 0.55
- higher mode or use of figures - e.g. 0.41 to 0.45 cf 0.36 to 0.40
allow ecf for figures from (b)
- there are no limpets at 0.21 to 0.25
allow there are no limpets on exposed shore at 0.56 to 0.70
(e) sheltered -0.47 or 0.466
exposed -0.35 or 0.354

1

$$
\begin{aligned}
& \left(\text { area }=3.14 \times(2.48)^{2}=\right) 19.3 \mathrm{~cm}^{2} \\
& \quad \text { allow area calculated from incorrect radius }
\end{aligned}
$$

(force $=19.3 \times 2=) 38.6$ (newtons)
Or
(force $=\left[3.14 \times(2.48)^{2}\right] \times 2$)
$=38.62$ (newtons)
Or
$\left(\right.$ force $\left.=\left[\pi \times(2.48)^{2}\right] \times 2\right)$
$=38.64$ (newtons)
allow force calculated from 1 previous error
(g) any two from:

- foot may not be circular
- foot may be larger / smaller than outside of shell
- scientists' value is approximate
- variation between limpets / described
e.g. re muscle development or greater 'awareness' of some limpets
- variation in rock surface texture
(h) any three from:
- more force of waves to dislodge limpets
- lower height lowers exposure to waves
- wider foot gives greater grip
- those with this / these feature(s) pass on alleles / genes to offspring leading to population of broad squat limpets
allow converse for sheltered shore throughout, if clearly stated

2. (a) there is an uneven distribution of dandelions
or
(more) representative / valid
or
avoid bias
or
more accurate / precise mean
ignore repeatability / reproducibility / reliability / fair test
(b) (correct mean per $\mathrm{m}^{2}=$) 6 or 6.0
(correct field area $=$) $55000\left(\mathrm{~m}^{2}\right)$
```
mean \(\times\) area - e.g. \(6(.0) \times 55000\)
    allow incorrect calculated values for mean and / or field area
```

330000 allow correct calculation from previous calculation
allow calculated value in standard form
an answer of 3.3×10^{5} scores 5 marks
an answer of 330000 scores 4 marks
(c) Level 3: The method would lead to the production of a valid outcome. All key steps are identified and logically sequenced.

Level 2: The method would not necessarily lead to a valid outcome. Most steps are identified, but the method is not fully logically sequenced.

Level 1: The method would not lead to a valid outcome. Some relevant steps are identified, but links are not made clear.

No relevant content

Indicative content

- placing of quadrat
- large number of quadrats used
- how randomness achieved - e.g. table of random numbers or random number button on calculator or along transect
- quadrats placed at coordinates or regular intervals along transect
- in each of two areas of different light intensities or transect running through areas of different light intensity
- for each quadrat count number of dandelions
- for each quadrat measure light intensity
- compare data from different light intensity
to access level 3 the key ideas of using a large number of quadrats randomly, or along a transect, and counting the number of dandelions in areas of differing light intensity need to be given to produce a valid outcome
(d) any two from:
- temperature
allow heat
- water
allow moisture / rain
- (soil) pH allow acidity
- minerals / ions allow e.g. magnesium ions or nitrate allow salts / nutrients
- winds
- herbivores
allow trampling ignore carbon dioxide ignore space ignore competition unqualified do not accept oxygen
[14]

3. (a) (i) counts / 12
$\times 120 \times 80 / \times 9600$
or
\times area of field
1
placed randomly
ignore method of achieving randomness
(ii) (more) quadrats / repeats
(b) (i) any three from:

- temperature / warmth / heat
- water / rain
- minerals / ions / salts (in soil)
allow nutrients / fertiliser / soil fertility
ignore food
- $\quad \mathrm{pH}$ (of soil)
- trampling
- herbivores
ignore predators
- competition (with other species)
- pollution qualified e.g. SO_{2} / herbicide
- wind (related to seed dispersal).
ignore space / oxygen / CO_{2} / soil unqualified
(ii) light needed for photosynthesis
for making food / sugar / etc.
effect on buttercup distribution eg more plants in sunny areas / fewer plants in shady areas
(c) (i) fertiliser / ions / salts cause growth of algae / plants
(algae / plants) block light
(low light) causes algae / plants to die
microorganisms / bacteria feed on / break down / cause decay of organic matter / of dead plants
do not allow germs / viruses
(aerobic) respiration (by microbes) uses O_{2}
do not allow anaerobic
(ii) sewage / toxic chemicals / correct named example eg metals / bleach / disinfectant / detergent etc
allow suitable named examples eg metals such as Pb / Zn / Cr / oil /
SO_{2} / acid rain / pesticides / litter
ignore chemicals unqualified
ignore waste unqualified
ignore human waste / domestic waste / industrial waste unqualified
(d) (i) 2
(ii) more food
allow other sensible suggestion eg more species colonise from tributary streams after forest
(iii) number of stonefly species decreases (from \mathbf{A} to \mathbf{B} / \mathbf{B} to \mathbf{C} / \mathbf{A} to \mathbf{C}) as more pollution enters river / less oxygen allow fewer species in more polluted water ignore none are found at site C

