

GCSE Biology

Variation and Evolution

Mark Scheme

Time available: 65 minutes Marks available: 55 marks

1. (a)

(b) a gene
allow allele
(c) 4
0.25
allow ecf
allow 1/4 / 25\% / 1 in 4/1:3
do not accept 1:4
(e) heterozygous
2. (a) any two from:

- larger / longer / thicker
allow examples eg fewer toes or bones fused
- fewer (bones in total)
allow smaller surface area touching the ground
- fewer bones touching the ground
(b) (i) large(r) surface / area in contact with the ground
or
low / less pressure on ground
(so) less likely to sink into mud / ground
or
(so) could run fast(er)
allow easy / easier to escape predators
(ii) variation (in size / number / arrangement of bones) allow mutation(s) (in size / number / arrangement of bones)
(and) those with large(r) / few(er) bones more suited to running or run faster (on harder / drier ground)
these survive and breed allow ref to offspring for breed
(so) genes / DNA (for larger / fewer bones) passed on allow alleles passed on

3. (a) reference to interbreeding
successfully between Island types
allow ref. to production of fertile offspring
allow ref. to DNA analysis / comparison for 1 mark
ignore ref. to grey fox
(b) (i) (two ancestral populations) separated / isolated (by geographical barrier / sea) and genetic variation (in each population) or different / new alleles or mutations occur under different environment / conditions
allow abiotic or biotic example
allow different selection pressures
natural selection occurs or better adapted survived to reproduce
so (favourable) alleles / genes / mutations passed on (in each population)
ignore they adapt to their environment
(ii) any one from:

- continued to mate with one another
- few beneficial mutations (between island varieties)
- similar conditions on each island so similar adaptations/features fit

4. (a) (i) nucleus
correct spelling only
accept mitochondrion
ignore genes / genetic material / chromosomes
(ii) base(s)

Accept all four correct names of bases

ignore nucleotides and refs to organic / N-containing
(iii) 4
(iv) codes for sequence / order of amino acids
ignore references to characteristics
codes for a (specific) protein / enzyme
or
the sequence / order of three bases / compounds / letters
codes for a specific amino acid
or
the sequence / order of 3 bases / compounds / letters
codes for the order / sequence of amino acids
(b) (i) DNA
circular / a ring or a vector / described
(ii) kills any cells not having kanr gene / so only cells with kan $^{\text {r }}$ gene survive
hence surviving cells will also contain Bt gene / plasmid
(iii) cells divide by mitosis ignore ref to asexual reproduction correct spelling only
genetic information is copied / each cell receives a copy of (all) the gene(s) / all cells produced are genetically identical / form a clone
(iv) any two from:

- gene may be passed to pathogenic bacteria
- cannot then kill these pathogens with kanamycin
or
cannot treat disease with kanamycin
- may need to develop new antibiotics
- gene may get into other organisms
- outcome unpredictable

5. (a) sexual
characteristic
mutation
chromosome
this order only
(b)

four correct gains 3 marks
two or three correct gains 2 marks
one correct gains 1 mark
accept correct connection between statement and box
6. (a) (i) $3.15: 1$
accept $3.147: 1$ or $3.1: 1$ or $3: 1$
do not accept 3.14 : 1
Ignore 705:224
(ii) any two from:

- fertilisation is random or ref. to chance combinations (of alleles / genes / chromosomes)
- more likely to get theoretical ratios or see (correct) pattern or get valid results if large number
allow ref. to more representative / reliable
do not allow more accurate or precise
ignore fair / repeatable
- anomalies have limited effect / anomalies can be identified accept example of an anomaly
(b) (i) in sequence:

Homozygous
Homozygous
Heterozygous
All 3 correct = 2 marks
2 correct = 1 mark
1 or 0 correct = 0 marks
(ii) genetic diagram including:

Parental genotypes: $\mathbf{N n}$ and $\mathbf{N n}$
allow other characters / symbols only if clearly defined
or
Gametes: \mathbf{N} and $\mathbf{n}+\mathbf{N}$ and \mathbf{n} derivation of offspring genotypes: $\mathbf{N N} \mathbf{N n} \mathbf{N n}$ nn
allow genotypes correctly derived from candidate's P gametes
identification: $\mathbf{N N}$ and $\mathbf{N n}$ as purple and $\mathbf{n n}$ as white allow correct identification of candidate's offspring genotypes but only if some F_{2} are purple and some are white
(c) any two from:

- did not know about chromosomes / genes / DNA or did not know chromosomes occurred in pairs
ignore genetics
- had pre-conceived theories
eg blending of inherited characters
ignore religious ideas unless qualified
- Mendel's (mathematical) approach was novel concept
allow his work was not understood or no other scientist had similar ideas
- Mendel was not part of academic establishment
allow he was not considered to be a scientist / not well known / he was only a monk
- work published in obscure journal / work lost for many years
- peas gave unusual results cf other species
allow he only worked on pea plants
- Mendel's results were not corroborated until later / 1900
[10]

