

GCSE Chemistry

Alcohols, Carboxylic Acids and Esters

Mark Scheme

Time available: 64 minutes Marks available: 62 marks

www.accesstuition.com

Mark schemes

1.	(a)	(i)	ethanol	1
		(ii)	oxidised	1
		(iii)	Test	-
			add any named carbonate or hydrogen carbonate the first mark is for the test; the second is for the result if the test is incorrect award 0 marks.	1
			Result	
			A will effervesce (carbon dioxide) or B will not effervesce. <i>if the result is incorrect, award the first mark only</i>	1

or

candidates do not have to name a gas but penalise an incorrect gas.

Test

add a named (magnesium, aluminium, zinc, iron or tin) metal give credit to any test that will work.

Result

A will effervesce (hydrogen), B will not allow a test that would identify B.

or

Test

add an acid-base indicator

Result

credit any acid colour for that indicator eg for universal indicator allow red, yellow or orange

give credit for the neutral colour for B

or

Test

add an alcohol (+ acid catalyst)

Result

sweet or fruity smell of esters.

(b) (i) H₂O

(ii) ethyl ethanoate

(iii) any **one** from:

- flavourings
- perfumes
- solvents
- plasticisers
 allow any correct use of esters

[7]

1

1

1

the rest of the diagram correct with four non-bonding electrons on the oxygen giving a total of eight electrons in oxygen outer energy level.

н н С С н

gains 2 marks

(c) (i) ±3024 (J)

(iii)

correct answer with or without working gains **3** marks if the answer is incorrect, award up to **2** marks for the following steps:

- $\Delta T = 14.4(^{\circ}C)$
- 50 x 4.2 x 14.4

allow ecf for incorrect ΔT

(ii) 0.015(2173913)

correct answer with or without working gains **3** marks if answer is incorrect, allow 1 mark each for any of the following steps up to a max of 2.

- 0.70g
- M_r of ethanol = 46
- 0.70/46

allow ecf in final answer for arithmetical errors

1

1

1

3

±198 720(J / mole) c(i) ÷ c(ii) allow ecf from (c)(i) and (c)(ii) 0.015 gives 201600 0.0152 gives 198947 0.01522 gives 198686

(d)	(as the molecules get bigger or the number of carbon atoms increases) the intermolecular forces	

allow intermolecular bonds

(intermolecular forces) increase allow more / stronger (intermolecular forces)

and therefore require more (heat) energy to overcome breaking covalent bonds or unspecified bonds max **1** mark (M3)

[15]

(a) HCOOH

3.

allow HCO₂H

(b)	incomplete / partial ionisation allow incomplete / partial dissociation	1
	(because) reaction is reversible allow (because) reaction is in equilibrium	1
(c)	mass (of flask and contents) decreases	1
	(because) carbon dioxide is produced	1
	(and) carbon dioxide escapes (from the flask) allow 1 mark for the gas produced escapes (from the flask)	1
(d)	(0.01 mol/dm ³) methanoic acid has a lower pH allow converse argument for ethanoic acid allow (0.01 mol/dm ³) methanoic acid is a stronger acid	1
	(so 0.01 mol/dm ³) methanoic acid has a higher concentration of hydrogen ions	1
	(therefore) more collisions per unit time	1
(e)	ethyl ethanoate	1
(f)		1
(a)	H - H - H - H - H - H - H - H - H - H -	[12]

1

4.

(b)

_

Name of element	Symbol for element	Number of atoms in one molecule of ethanol
carbon	С	2
hydrogen	Н	6
oxygen	0	1

ignore O2

(c)	a solvent		1
(d)	sugar	allow named sugar allow saccharide	1
(e)	yeast		-
(f)	ethyl ethanc	pate	1
(g)	water	ignore H ₂ O	1

1 1 1

5.

	1.00 0.40 × 20			
		allow correct use of incorrectly converted or unconverted volume	1	
	= 50 (g)		1	
	alternative	e approach:		
	$1.0 \text{ dm}^3 = 1000 \text{ cm}^3$ (1)			
	$\frac{1000}{400}$ × 20 (1)			
		allow correct use of incorrectly converted or unconverted volume		
	= 50 (g) (1)		[40]
(a)	oxygen			ניצן
		allow correct answer shown in box if answer line blank	1	
(b)	vinegar			
		allow correct answer shown in box if answer line blank	1	
(c)	С		1	
(d)	Ester			
(e)	pleasant s	mell	1	
(-)	F		1	
	volatile	allow low boiling point / evaporates		
			1	[6]

1

- 6.
- (a) any **two** from:

	•	fuel	
	•	allow source of energy	
	-	allow perfume / aftershave	
	•	antiseptic	
		allow antibacterial	2
(h)	لمريا	rog op	
(D)	пуц	rogen	1
(c)	(i)	oxidation	
(0)	(.)	do not allow redox	
			1
	(ii)	correct structure	
			1
	(iii)	ethanoic acid is a weak / weaker acid	
		it = ethanoic acid	
			1
		because it does not completely ionise.	
		allow because it does not completely dissociate	
		allow it has a lower concentration of hydrogen ions	
		allow converse for hydrochloric acid	
		do not allow ionising	1
(H)	(i)	othyl othapoato	
(u)	(1)		1
	(ii)	acid	
	()	allow any strong acid	
		allow correct formulae	
			1
	(iii)	evaporates easily / quickly	
		allow low boiling point	
		do not allow flammable	1
			י [10]