

GCSE Chemistry

Bond Energy Calculations

Mark Scheme

Time available: 59 minutes Marks available: 57 marks

www.accesstuition.com

Mark schemes

- **1.** (a) water vapour allow steam allow gaseous water
 - (b) 75 (cm³)
 - (c) product level below reactants ignore labelling of products

scores 3 marks

1

1

1

1

1

(d) (bonds broken = 4(364) + 3(498) = 2950

(bonds forn	ned = 2950 + 1034 =) 3984 allow correct use of incorrectly calculated values of bonds broken	1
4 X + 4(464) = 3984	
	allow correct use of incorrectly calculated values of	
	bonds formed	1
4 X = (3984 – 1856 =) 2128		
-		1
X = 532 (kJ/mol)		
alternative approach:		J

(bonds broken = 4(364) + 3(498) = 2950 (1)

(bonds formed = 4(464) + 4X = 1856 + 4X (1)

 $(1856 + 4\mathbf{X}) - 2950 = 1034$ (1)

allow correct use of incorrectly calculated values of bonds broken and/or bonds formed

4**X** = (1034 + 2950 - 1856 =) 2128 (1)

X = 532 (kJ/mol) (1)

|--|

(a)

scores **2** marks allow dots, crosses, circles or $e^{(-)}$ for electrons

1 bonding pair of electrons in each overlap

2 non-bonding electrons on nitrogen do **not** accept non-bonding electrons on hydrogen ignore inner shell electrons drawn on nitrogen

1

1

1

[10]

(b)	does not show the shape or		
	only two-dir	mensional	
	-	allow is not three-dimensional	
			1
(c)	(ammonia h	nas) small molecules	
()	,	allow (ammonia has) a simple molecular (structure)	
			1
	(ammonia h	nas) weak intermolecular forces	
	Υ.	allow (ammonia has) weak intermolecular bonds	
		do not accept weak covalent bonds	
			1
	(so) little er	nergy is needed to overcome the intermolecular forces	
	()	allow (so) little energy is needed to break the	
		intermolecular bonds	
		allow (so) little energy is needed to separate the molecules	
		do not account references to breaking covalent bonds	
		do not accept references to breaking covalent bonds	1
(d)	$Cr_{2}O_{2}$		
(9)	01203		1
(e)			
(0)		an answer of (-)1272 (kJ) scores 3 marks	
	(for bondo k		
	$((12 \times 391) + (3 \times 498) =) 6186$		
	((12 × 001)	r (3 x +30) =) 0100	1
	(for bonds r	made)	
	((2 x 945) +	$-(12 \times 464) =)7458$	
			1
	(overall ene	ergy change = 6186-7458 =) (-)1272 (kJ)	
	(allow correct calculation using incorrectly calculated	
		values from step 1 and/or step 2	
			1

allow ecf from part (e)

7458 (kJ) (released in making bonds) is greater than 6186 (kJ) (used in breaking bonds) or the products have 1272 (kJ) less energy than the reactants

allow the (overall) energy change is -1272 (kJ)

(so) energy is released (to the surroundings)

dependent on MP1 being awarded allow (so) heat is released (to the surroundings) if no values given, allow **1** mark for more energy released in making bonds than used in breaking bonds

(g)

3.

1

1

1

1

1

1

[14]

- (a) circle round any one (or more) of the covalent bonds
 any correct indication of the bond the line between letters
 - (b) Methane contains atoms of two elements, combined chemically

(c) (i) activation energy labelled from level of reagents to highest point of curve *ignore arrowheads*

enthalpy change labelled from reagents to products

arrowhead **must** go from reagents to products only

(ii)	2 O ₂	1
	2 H ₂ O if not fully correct, award 1 mark for all formulae correct. ignore state symbols	1
(iii)	carbon monoxide is made	1
	this combines with the blood / haemoglobin or prevents oxygen being carried in the blood / round body or kills you or is toxic or poisonous <i>dependent on first marking point</i>	-
(iv)	energy is taken in / required to break bonds accept bond breaking is endothermic	1
	energy is given out when bonds are made	1
	accept bond making is exothermic	1
	the energy given out is greater than the energy taken in <i>this mark only awarded if both of previous marks awarded</i>	1

www.accesstuition.com

1

1

(d)	(i)	energy to break bonds = 1895		
		calculation with no explanation $max = 2$	1	
		energy from making bonds = 1998	1	
		1895 – 1998 (= –103) or		
		energy to break bonds = 656 energy from making bonds = 759 656 - 759 (= -103)		
		allow:		
		bonds broken – bonds made =		
		413 + 243 – 327 – 432 = -103 for 3 marks.		
			1	
	(ii)	The C — Br bond is weaker than the C — CI bond		
			1	[15]
				[15]
(a)	proc	lucts are at a lower energy level than reactants		
		if candidate has drawn a profile for an endothermic reaction		
		penalise hist marking point only	1	
	activ	vation energy correctly drawn and labelled		
			1	
	ΔH	correctiv labelled		
			1	
(b)	(i)	–93 (kJ per mole)		
		correct answer with or without working gains 3 marks		
		allow 2 marks for +93 kJ per mole		
		if any other answer is seen award up to 2 marks for any two of the steps below:		
		bonds broken (614 + 193) = 807 (kJ) or (614 + 193 + (4 × 413)) = 2459(kJ)		
		bonds formed (348 + 276 + 276) = 900(kJ) or 348 + (2 × 276) + (4 × 413) = 2552(kJ)		
		bonds broken – bonds formed		
		allow ecf for arithmetical errors	2	
			3	
	(ii)	more energy is released when the bonds (in the products) are formed		

4.

1

		than is needed to break the bonds (in the reactants) if no other marks gained, allow 1 mark for energy released for bond making and energy used for bond breaking	1 [8]
E	(a)	neutron(s)	
Э.		answers can be in either order	1
		proton(s)	1
	(b)	came number (17) protone er came number electrone	1
	(U)	if candidate chooses to quote numbers, they must be correct	
			1
		different numbers of neutrons (³⁵ Cl has 18 and ³⁷ Cl has 20)	
			1
	(c)	(i) −184kJ / mol	
		correct answer with or without working gains 3 marks	
		allow 2 marks for 184 kJ / mol	
		It answer incorrect award up to 2 marks for any two of the steps below:	
		• bonds broken: (436 + 242) = 678 (kJ)	
		 bonds formed: (2 × 431) = 862 (kJ) 	
		bonds broken – bonds formed	
			3
		(ii)	
		Energy Activation AH energy Products Reaction	
		the reactants and the products at the correct level	
		ignore labels on the axes	
			1
		ΔH correctly labelled	
		allow –538 if in correct place	1
		E ₂ correctly labelled	
		correctly labelled endothermic reaction gains max. 2 marks	
			1
		www.accesstuition.com	[10] Page 9 of 9