

GCSE Chemistry

Bond Energy Calculations

Mark Scheme

Time available: 59 minutes Marks available: 57 marks

Mark schemes

1. (a) water vapour
allow steam
allow gaseous water
(b) $75\left(\mathrm{~cm}^{3}\right)$
(c) product level below reactants
ignore labelling of products
activation energy drawn and labelled
overall energy change drawn and labelled
if endothermic profile drawn allow corresponding overall energy change

Progress of reaction
scores 3 marks
(d) (bonds broken $=4(364)+3(498)=$) 2950
(bonds formed = $2950+1034=$ =) 3984
allow correct use of incorrectly calculated values of bonds broken

$$
4 X+4(464)=3984
$$

allow correct use of incorrectly calculated values of bonds formed
$4 X=(3984-1856=) 2128$

X $=532(\mathrm{~kJ} / \mathrm{mol})$
alternative approach:
(bonds broken $=4(364)+3(498)=$) $2950(1)$
(bonds formed $=4(464)+4 X=) 1856+4 X(1)$
$(1856+4 X)-2950=1034(1)$
allow correct use of incorrectly calculated values of bonds broken and/or bonds formed
$4 \mathbf{X}=(1034+2950-1856=) 2128(1)$
X = 532 ($\mathrm{kJ} / \mathrm{mol}$) (1)
2. (a)

scores 2 marks
allow dots, crosses, circles or $e^{(-)}$for electrons
1 bonding pair of electrons in each overlap

2 non-bonding electrons on nitrogen
do not accept non-bonding electrons on hydrogen ignore inner shell electrons drawn on nitrogen
(b) does not show the shape
or
only two-dimensional
allow is not three-dimensional
(c) (ammonia has) small molecules
allow (ammonia has) a simple molecular (structure)
(ammonia has) weak intermolecular forces
allow (ammonia has) weak intermolecular bonds do not accept weak covalent bonds
(so) little energy is needed to overcome the intermolecular forces allow (so) little energy is needed to break the intermolecular bonds allow (so) little energy is needed to separate the molecules
do not accept references to breaking covalent bonds
(d) $\mathrm{Cr}_{2} \mathrm{O}_{3}$
(e)
an answer of (-)1272 (kJ) scores 3 marks
(for bonds broken)
$((12 \times 391)+(3 \times 498)=) 6186$
(for bonds made)
$((2 \times 945)+(12 \times 464)=) 7458$
(overall energy change $=6186-7458=$) (-)1272 (kJ) allow correct calculation using incorrectly calculated values from step 1 and/or step 2

(f)
allow ecf from part (e)
7458 ($\mathrm{kJ)}$ (released in making bonds) is greater than 6186 ($\mathrm{kJ)}$ (used in breaking bonds)
or
the products have $1272(\mathrm{~kJ})$ less energy than the reactants allow the (overall) energy change is -1272 (kJ)
(so) energy is released (to the surroundings)
dependent on MP1 being awarded allow (so) heat is released (to the surroundings)
if no values given, allow 1 mark for more energy released in making bonds than used in breaking bonds
(g)

scores 2 marks
allow discontinuous lines
ignore arrow heads
activation energy labelled
(overall) energy change labelled
3. (a) circle round any one (or more) of the covalent bonds any correct indication of the bond - the line between letters
(b) Methane contains atoms of two elements, combined chemically
(c) (i) activation energy labelled from level of reagents to highest point of curve ignore arrowheads
enthalpy change labelled from reagents to products

arrowhead must go from reagents to products only
(ii) $2 \mathrm{O}_{2}$
$2 \mathrm{H}_{2} \mathrm{O}$
if not fully correct, award 1 mark for all formulae correct.
ignore state symbols
(iii) carbon monoxide is made
this combines with the blood / haemoglobin or prevents oxygen being carried in the blood / round body or kills you or is toxic or poisonous
dependent on first marking point
(iv) energy is taken in / required to break bonds
accept bond breaking is endothermic
energy is given out when bonds are made accept bond making is exothermic
the energy given out is greater than the energy taken in this mark only awarded if both of previous marks awarded

1
(d) (i) energy to break bonds = 1895 calculation with no explanation $\max =2$
energy from making bonds $=1998$
$1895-1998(=-103)$
or
energy to break bonds $=656$
energy from making bonds $=759$
$656-759$ (=-103)
allow:
bonds broken - bonds made $=$
$413+243-327-432=-103$ for 3 marks.
(ii) The $\mathrm{C}-\mathrm{Br}$ bond is weaker than the $\mathrm{C}-\mathrm{Cl}$ bonc
4. (a) products are at a lower energy level than reactants
if candidate has drawn a profile for an endothermic reaction penalise first marking point only
activation energy correctly drawn and labelled
$\Delta \mathrm{H}$ correctly labelled
(b) (i) $\quad-93$ (kJ per mole)
correct answer with or without working gains 3 marks
allow 2 marks for +93 kJ per mole
if any other answer is seen award up to $\mathbf{2}$ marks for any two of the steps below:
bonds broken $(614+193)=807(\mathrm{~kJ})$ or $(614+193+(4 \times 413))=$ 2459(kJ)
bonds formed $(348+276+276)=900(\mathrm{~kJ})$ or $348+(2 \times 276)+(4 \times$ 413) $=2552(\mathrm{~kJ})$
bonds broken - bonds formed
allow ecf for arithmetical errors
(ii) more energy is released when the bonds (in the products) are formed
than is needed to break the bonds (in the reactants)
if no other marks gained, allow 1 mark for energy released for bond making and energy used for bond breaking
5. (a) neutron(s) answers can be in either order
proton(s)
(b) same number (17) protons or same number electrons
if candidate chooses to quote numbers, they must be correct
different numbers of neutrons $\left({ }^{35} \mathrm{Cl}\right.$ has 18 and ${ }^{37} \mathrm{CI}$ has 20$)$
(c) (i) $-184 \mathrm{~kJ} / \mathrm{mol}$
correct answer with or without working gains 3 marks
allow 2 marks for $184 \mathrm{~kJ} / \mathrm{mol}$
If answer incorrect award up to $\mathbf{2}$ marks for any two of the steps below:

- bonds broken: $(436+242)=678(\mathrm{~kJ})$
- bonds formed: $(2 \times 431)=862(\mathrm{~kJ})$
- bonds broken - bonds formed
allow ecf for arithmetical errors
(ii)

the reactants and the products at the correct level
ignore labels on the axes
$\Delta \mathrm{H}$ correctly labelled
allow -538 if in correct place
E_{a} correctly labelled
correctly labelled endothermic reaction gains max. 2 marks

