

4-5 Energy Changes - Chemistry

1.0 The **Figure 1** shows magnesium burning in air.

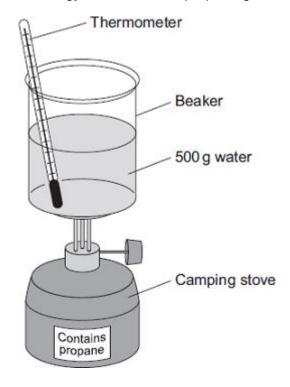
Figure 1

© Charles D Winters/Science Photo Library

1.1 Give **one** observation that you can make from **Figure 1** that shows that a chemical reaction is taking place.

[1 mark]

1.2 The Bunsen burner flame provides energy to start the magnesium burning. Draw a ring around the name given to the energy needed to start a chemical reaction.


[1 mark]

Activation energy Potential Energy Solar Energy

2.0 A camping stove uses propane gas.

A student investigated the energy released when propane gas is burnt.

The student:

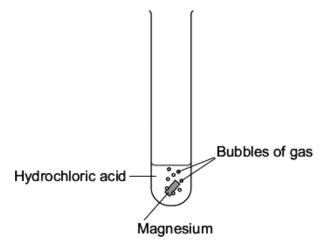
- put 500 g water into a beaker
- recorded the starting temperature of the water
- heated the water by burning propane for 1 minute
- recorded the temperature of the water after burning the propane.

Table 1 shows the student's results for the investigation.

Table 1

Starting temperature of water in °C	Temperature of water after burning propane in °C	Temperature change of water in °C
19	34	

2.1	Name the instrument the student should use to measure the temperature.		[1 mark]
2.2	Calculate the temperature change of the water.		 [1 mark]
	Temperature change =	°C	



2.3	Calculate the energy released in joules when propane is burned for 1 minute.
	Use the equation:

energy released (J) = mass of water (g) \times 4.2 \times temperature change (°C) [2 marks] Energy released = ______ J

3.0 A student investigated the reaction of magnesium with hydrochloric acid.

A piece of magnesium was dropped into the hydrochloric acid.

Bubbles of gas were produced and the magnesium disappeared.

3.1 This reaction is exotherm	nic	nern	the	cotl	ex	is	reaction	This	3.1	3
-------------------------------	-----	------	-----	------	----	----	----------	------	-----	---

How could the student prove this?

[2 marks]

3.2 State **one** safety precaution that the student should take during the experiment.

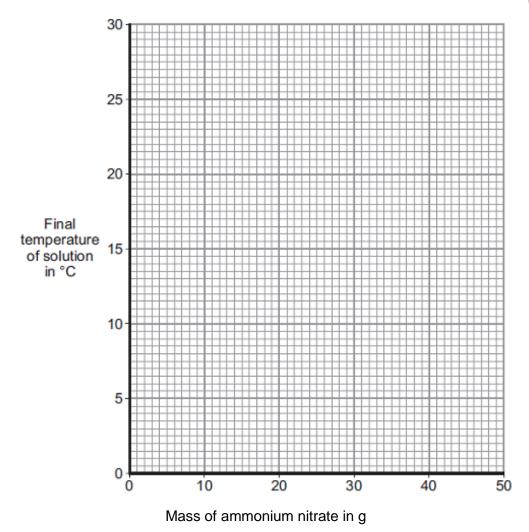
[1 mark]

3.3 How could the student tell if the reaction had finished?

[1 mark]

4.0 A student investigated how the temperature of water changed when different masses of ammonium nitrate were added to the same volume of water.

The student's results are shown in the **Table 2**.


Table 2

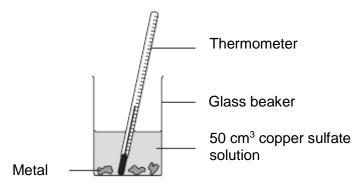
Mass of ammonium nitrate in g	Final temperature of solution in °C
10	15.0
15	12.5
20	10.0
25	7.5
30	5.0
35	5.0
40	5.0

4.1 Plot the results on the grid.

Draw two straight lines of best fit through the points.

[4 marks]

4.2	Use your graph to estimate the temperature when no ammonium nitrate has been added to the water.	www.accesstuition.o
		[1 mark]
	Temperature when no ammonium nitrate added =°C	
4.3	Suggest what the temperature of the water shows before ammonium nitrate is adde	ed. [1 mark]
	Tick one box.	
	Body temperature	
	Boiling point	
	Freezing point	
	Room temperature	



_	Vhat is the independent va	riable in this inve	estigation?		[1 m
W	/hat is the dependent varia	ıble in this inves	tigation?		[1 ma
Si	tate two control variables t	the student shou	uld keep the san	ne.	[2 mai
e 3	shows the student's resul	ts. Tab	le 3		
	Metal	,	Temperature (°	C)	
		Start	End	Change	
	Iron	19	24	5	
	Magnesium	20	35	15	
۱۸	Zinc /hich type of graph should	20 the student dray	28	8 results?	
	xplain your answer.	the student drav	w to display thes	e results:	[2 ma
_					

5.6 Figure 2 shows the equipment the student used for the investigation.

Explain how the student could have improved the **equipment** used for this investigation.

[4 marks]

6.0 Ammonia is used in the manufacture of fertilisers. The equation for the formation of ammonia (NH₃) from nitrogen (N₂) and hydrogen (H₂) is:

$$N_{2(g)} + 3H_{2(g)} \rightleftharpoons 2NH_{3(g)}$$

This question refers to the **forward** reaction which is exothermic.

Bond energies for the reaction are given in Table 4.

Table 4

Bond	Bond energy in kJ per mole
N = N	945
H – H	436
N – H	390

The structures are shown in Figure 3.

Figure 3

$$N \equiv N$$
 $H - H$ $H - N - H$ I H

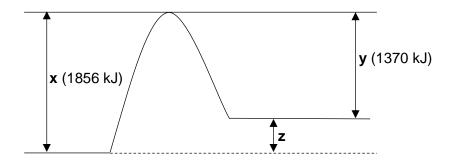
6.1 Calculate the overall energy change for the **forward** reaction.

[3 marks]

6.2 Draw an energy level diagram for the **forward** reaction Mark on the energy level diagram:

- Nitrogen (N₂)
- Hydrogen (H₂)
- Ammonia (NH₃)
- The activation energy
- The overall energy change.

[5 marks]



7.0 Water decomposes to form hydrogen and oxygen.

The equation for the reaction is:

$$2H_2O \rightarrow 2H_2 + O_2$$

The reaction profile for this reaction is shown below.

7.1 Explain the significance of **x**, **y** and **z** in the reaction profile in terms of energy transfers that occur in the reaction.

In your answer make reference to:

- the substances involved
- the bonds broken and formed
- the overall energy transfer.

		[6 mar
	 	

MARK SCHEME

Qu No.		Extra Information	Marks
1.1	Any one from: there was a flame (white) smoke was formed the magnesium turned into a (white) powder		1
1.2	Activation energy		1

Qu No.		Extra Information	Marks
2.1	Thermometer		1
2.2	15 °C		1
2.3	31500 (J)	Allow ecf from 2.1	2
		Allow 1 mark for 500 × 4.2 × 15	
		or	
		500 × 4.2 × (ans 2.1)	

Qu No.		Extra Information	Marks
3.1	Take two measurements of temperature (at beginning and end)		1
	temperature would increase		1
3.2	Any one from: • eye protection • lab coat • (long) hair tied back • secure the test tube		1
3.3	Any one from: magnesium completely disappears bubbles stop appearing	Do not allow dissolves	1

Qu No.		Extra Information	Marks
4.1	All 7 points plotted correctly	Allow E/G points platted correctly for 1	2
		Allow 5/6 points plotted correctly for 1 mark	
	Straight line through first 5 points		1
	Straight line through last three points		1
4.2	20 °C	Allow value read from correct extrapolation of the drawn line of best fit	1
4.3	Room temperature		1

Qu No.		Extra Information	www.accesstuii Marks
5.1	Type of metal	Allow metal	1
5.2	Temperature change	Allow Metal	1
5.3	Any two from:		2
3.0	volume of copper sulfate solution		_
	concentration of copper sulfate solution		
	mass of metal used		
	starting temperature.		
5.4	Bar Chart		1
	(Because the independent) variable is categoric/discrete		1
5.5	The more reactive the metal the higher the temperature change	Allow a statement along the lines of: "Mg releases more heat than Zn, then Iron" (i.e. refer to all three metals in a sequence)	1
5.6	Used a lid	Allow insulate outside of beaker	1
	To reduce heat loss or		1
	to improve insulation		
	Used a thermometer with a higher resolution.	Allow measure to the nearest 0.5 °C or 0.1 °C	1
	To measure the temperature change more accurately		1
Qu No.		Extra Information	Marks
6.1	(Energy taken in) =945 + (3 × 436) = 2253 (kJ)		1
	(Energy given out)= 6 × 390 = 2340 (kJ)		1
	(Energy change) 2253 – 2340 = (–) 87 (kJ)	Allow ecf from step 1/2	1
		Correct answer with/without working gains 3 marks.	
6.2	Reactant energy higher than the product energy		1
	Curve for the reaction correctly drawn		1
	Nitrogen and hydrogen shown as reactants and ammonia as a product		1
	Activation energy correctly labelled		1
	Energy change correctly labelled	Allow 2253 kJ (or value obtained by student) correctly shown on graph Allow (–) 87 kJ (or value obtained by student) correctly shown on graph	1

Qu No.	Extra Information	on	Marks
7.1			
Level 3:	A detailed and coherent explanation is given, which demonstrates a broad understanding of the key scientific ideas. The response makes logical links between the points raised and uses sufficient examples to support these links.		5-6
Level 2:	An explanation is given which demonstrates a reasonable understanding of the key scientific ideas. Links are made but may not be fully articulated and / or precise.		3-4
Level 1:	Simple statements are made which demonstrate a basic understanding of some of the relevant ideas. The response may fail to make logical links between the points raised.		1-2
Level 0:	No relevant content		0
Indicativ	ve content		
Substan	ces		
 react 	tant is water		
• produ	ucts are oxygen and hydrogen		
Significa	ance of x, y and z		
 x is e 	s energy required to break the bonds in reactant / water		
 x is a 	activation energy		
y is tl	is the energy released/given out when bonds form		
y is tl	he energy released/given out when hydrogen and oxygen form		
 z is d 	difference between x and y		
• z is tl	the overall energy transfer		
Overall e	energy transfer		
• z = 1	856 - 1370 = (+)486 kJ		
• overa	all, energy is absorbed in the reaction		
energe form	ergy required to break existing bonds is greater than the energy released when new bonds		
• so re	eaction is endothermic		