

GCSE Chemistry

Cracking

Mark Scheme

Time available: 63 minutes Marks available: 63 marks

www.accesstuition.com

Mark schemes

(a)	(i)	high temperature allow heating / hot / 250-900 °C	
		catalyst or steam allow named catalyst eg zeolite, Al ₂ O ₃ , silica, ceramic allow in the absence of air / oxygen	1
		ignore any references to pressure	1
	(ii)	colourless allow decolourised ignore clear / discoloured	1
	(iii)	H H H H H-C-C-C-C-H H H H H	
			1
(b)	(i)	20.3(0) (kJ) if answer incorrect allow 1 mark for 24.36/1.2	2
	(ii)	use a lid allow insulate beaker or use draught shield	
		reduce energy / heat loss ignore references to thermometer or repeats or distance of flame or loss of water vapour allow stir (1) to distribute energy / heat (1) allow use a metal can (1) as it's a better conductor (1)	1
	(iii)	carbon/soot	-
		ignore tar, smoke (produced by) incomplete combustion allow from a limited supply of oxygen/air	1
	(iv)	hexane gives out the greatest energy (per 1.0 g) ignore more energy	-
		hexane produces the least smoke / carbon / soot allow has the cleanest flame ignore less smoke / carbon / soot	1

3.

www.accesstuition.com

(c) Marks awarded for this answer will be determined by the Quality of Written Communication (QWC) as well as the standard of the scientific response. Examiners should also apply a 'best-fit' approach to the marking.

Level 3 (5 – 6 marks):

Descriptions of advantages and disadvantages that are linked to their own knowledge.

Level 2 (3 – 4 marks):

Descriptions of an advantage **and** a disadvantage with some use of their knowledge to add value.

Level 1 (1 – 2 marks):

Statements made from the information that indicate whether at least one statement is an advantage **or** a disadvantage

or a linked advantage or disadvantage

0 marks:

No relevant content

Examples of the added value statements and links made in the response could include:

Note that link words are in bold; links can be either way round. Accept reverse arguments and ignore cost throughout.

Advantages of using hydrogen:

- Combustion only produces water **so** causes no pollution
- Combustion does not produce carbon dioxide **so** this does not contribute to global warming or climate change
- Combustion does not produce sulfur dioxide **so** this does not contribute to acid rain
- Incomplete combustion of petrol produces carbon monoxide that is toxic
- Incomplete combustion of petrol produces particulates **that** contribute to global dimming
- Petrol comes from a non-renewable resource **but** there are renewable/other methods of producing hydrogen
- Hydrogen releases more energy **so** less fuel needed or more efficient

Disadvantages of using hydrogen:

- Hydrogen is a gas **so** is difficult to store or transfer to vehicles
- Hydrogen gas is very flammable **so** leaks cause a greater risk of explosion
- Most hydrogen is produced from fossil fuels which are running out
- Cannot be used in existing car engines **so** modification / development or replacement is needed
- Lack of filling stations **so** difficult to refuel your vehicle

							[18]
4.	(a)	(i)	D			1	
		(ii)	В			1	
		(iii)	А			1	
				www.accesst	uition.com	_	_

6

	(iv)	E	1
	(v)	E	1
(b)	(i)	high temperature ignore hot / heat allow temperature quoted (range 300-900 °C)	1
		catalyst or steam	1
	(ii)	C_8H_{18} smaller molecule $It = C_8H_{18}$ therefore there are weaker intermolecular forces allow intermolecular bonds do not accept breaking covalent bonds / bonds	1
		or	
		weaker intermolecular forces in C ₈ H ₁₈ (1) allow intermolecular bonds	
		so less energy to break (1)	1
(c)	add b	promine water	1
	turns	(from orange / yellow / red / brown) to colourless or decolourises do not accept discoloured ignore clear incorrect test = 0 marks	1
(d)		$- \begin{array}{c} H \\ - C \\ - H \\ H \\ \end{pmatrix}_{n}$	-
		single C – C bond	1
		four carbon-hydrogen bonds in place and two trailing bonds structure in brackets and n at bottom right	1 1

[14]

(a)	(i)	alkanes and alkenes			
		any order			
		allow saturated and unsaturated (hydrocarbons)		1	
	(ii)	high temperature			
		allow temperatures from 300 – 900 °C			
		allow vapours			
		ignore heat / hot or pressure		1	
		catalyst or steam			
		allow zeolite / aluminium oxide			
		ignore names of other catalysts			
				1	
	(iii)	oxygen could react / burn with the hydrocarbons			
		allow oxygen could cause an explosion			
				1	
	(iv)	(fractional) distillation			
				1	
(b)	(i)	displayed structure of butene drawn			
				1	
	(ii)	many monomers or many butene molecules			
	()			1	
		form chains or very large molecules			
		if no other mark awarded allow double bond breaks / opens up or			
		double bond forms a single bond for 1 mark			
				1	
					[8]
(a)	vap	orise / evaporate			
		allow boil for vaporise			
			1		
	diffe	rent condensing points / temperatures			
		accept condense at different levels			
		ignore different size molecules or different densities			
		mention of cracking = max 1			
		allow boils at different temperatures and condenses for 2 marks			
		if no other marks awarded allow			
		fractional distillation for 1 mark			
			1		
(b)	(i)	3 (C ₂ H ₄)			
. ,	.,	accept + C_4H_8			
		· · · ·	1		

5.

6.

	(ii)	(decane / naphtha / hydrocarbon) vaporise / evaporate allow crude oil	
		allow boil for vaporise	1
		(passed over) a catalyst / alumina / porous pot	
		ignore other names of catalysts	1
(c)	any	t wo from:	
		'they' must be clarified	
	•	alkanes / butane (molecules) do not have a (carbon carbon) double bond / are saturated / have (carbon carbon) single bonds	
	•	alkenes / ethene (molecules) have (carbon carbon) double bonds	
		or are unsaturated	
	•	alkenes / ethene molecules are able to bond to other molecules	2
(d)	singl	e bonds between carbon atoms	
		- C - C -	
			1
	the -	CH_3 group appears on each pair of carbons on the 'chain'	
		NB any double bonds = 0 marks	
			1