

Group 7 Elements

Mark Scheme

Time available: 57 minutes Marks available: 55 marks

Mark schemes

1. (a) 7

1
(b) small molecule
(c) F_{2}
(d) the reactivity decreases (going down Group 7)
allow the reactivity decreases from chlorine to iodine
(because) chlorine displaces bromine and iodine allow (because) chlorine has two reactions allow (because) neither bromine nor iodine can displace chlorine
(and) bromine displaces iodine or iodine does not react allow (and) bromine has one reaction or iodine has no reactions allow (and) iodine cannot displace bromine
(e) 80
(f) $\quad(1.2 \mathrm{~kg}=) 1200(\mathrm{~g})$
or $(900 \mathrm{~g}=) 0.9(\mathrm{~kg})$
$\left(\frac{900}{1200} \times 100\right)=75(\%)$
or

$$
\left(\frac{0.9}{1.2} \times 100\right)=75(\%)
$$

allow an answer correctly calculated from:
$\left(\frac{900}{\text { incorrect attempt at }} \times 100\right.$) conversion of 1.2
or
($\frac{\text { conversion of } 900}{1.2} \times 100$)
2. (a) The forces between iodine molecules are stronger
(b) anything in range +30 to +120
(c) Brown
(d) $2 \mathrm{I}^{-}+\mathrm{Cl}_{2} \rightarrow \mathrm{I}_{2}+2 \mathrm{Cl}^{-}$
(e) It contains ions which can move
(f) hydrogen iodine
3. (a) potassium chloride and iodine either order allow KCl for potassium chloride and I_{2} for iodine
(b) (chlorine's) outer electrons / shell closer to the nucleus allow chlorine has fewer shells allow chlorine atom is smaller than iodine atom ignore chlorine has fewer outer shells
(so) the chlorine nucleus has greater attraction for outer electrons / shell allow chlorine has less shielding do not accept incorrect types of attraction
(so) chlorine gains an electron more easily
max 2 marks can be awarded if the answer refers to chloride / iodide instead of chlorine / iodine allow converse statements allow energy levels for shells throughout
(c) hydrogen chloride is made of small molecules allow hydrogen chloride is simple molecular
(so hydrogen chloride) has weak intermolecular forces*
(intermolecular forces) require little energy to overcome*
(d) \quad (bonds broken $=4(412)+193=) 1841$
(bonds formed $=3(412)+366+\mathbf{X}=) 1602+\mathbf{X}$
$-51=1841-(1602+X)$
allow use of incorrectly calculated values of bonds
broken and / or bonds formed from steps 1 and 2 for steps 3 and 4
($\mathbf{X}=$) $290(\mathrm{~kJ} / \mathrm{mol})$
allow a correctly calculated answer from use of -51 = bonds formed - bonds broken

OR

alternative method ignoring the 3 unchanged $\mathrm{C}-\mathrm{H}$ bonds
$(412+193=) 605(1)$
$366+X(1)$
$-51=605-(366+X)(1)$
($\mathbf{X}=$) 290 ($\mathrm{kJ} / \mathrm{mol}$) (1)
an answer of $290(\mathrm{~kJ} / \mathrm{mol})$ scores 4 marks an answer of 188 ($\mathrm{kJ} / \mathrm{mol}$) scores 3 marks an incorrect answer for one step does not prevent allocation of marks for subsequent steps
4. (a) increase
(b) (i) Na^{+}and Br^{-}
both required
(ii) sodium chloride
allow NaCl
do not allow sodium chlorine
(iii) chlorine is more reactive than bromine allow converse argument allow symbols $\mathrm{Cl}, \mathrm{Cl}_{2}, \mathrm{Br}$ and Br_{2} allow chlorine / it is more reactive do not allow chloride or bromide
(iv) fluorine
allow F / F_{2}. do not allow fluoride.
5. (a) (i) Halogens
(ii) They consist of molecules

They have coloured vapours
(b) (i) $7 /$ seven
(ii) liquid
(iii) astatine allow obvious mis-spelling ignore At
(c) chlorine reacts with (the) bromide [owtte]
chlorine reacts with (the) iodide [owtte] allow chlorine reacts with both
or
chlorine has more reactions for 2 marks
or
bromine reacts with one and iodine does not react at all for 2 marks
6. (a) any (must be named)
(b) F_{2}
(c) $-/ F^{-}$
(d) (i) covalent
(ii) made of molecules etc.
type of bonding when non-metals react.
7. (a) gas
(b) $-35\left({ }^{\circ} \mathrm{C}\right)$

$$
\text { allow any value between }-35^{\circ} \mathrm{C} \text { and }-100^{\circ} \mathrm{C}
$$

(c) increase
increase

> allow become stronger
(d) chlorine gas is toxic
(e) increased
chlorine (atoms) are now part of the solid (iron chloride)
or
the mass of the chlorine (atoms) is now also measured
(f) burns very vigorously
allow burns violently
allow brighter (orange) glow
allow (orange) flame
allow explodes
(g) $2 \mathrm{Fe}+3 \mathrm{Br}_{2} \rightarrow 2 \mathrm{FeBr}_{3}$
allow multiples
(h) $56+(3 \times 80)$
$=296$
ignore units

