

GCSE Chemistry

Le Chatelier's Principle

Mark Scheme

Time available: 61 minutes Marks available: 59 marks

www.accesstuition.com

Mark schemes

1.	(a)	(equation contains the symbol) ⇒		
		allow description of arrow / symbol	1	
	(b)	the mass of each substance does not change	1	
		the rates of the forward reaction and reverse reaction are equal	1	
	(c)	the mixture will have become a paler purple	1	
	(d)	increases must be in this order	1	
		decreases	1	
		increases	1	
	(e)	change the temperature		
		or		
		add a catalyst		
		ignore references to pressure	1	[8]
2	(a)	(steam / catalytic) cracking		
2.		allow thermal decomposition	1	
	(b)	high temperature	1	
		steam / catalyst		
		allow a temperature in the range 300 – 900 °C	1	

(c)	Level 3: Relevant points (reasons/causes) are identified, given in detail and logically linked to form a clear account.	5-6
	Level 2: Relevant points (reasons/causes) are identified, and there are attempts at logical linking. The resulting account is not fully clear.	3-4
	Level 1: Points are identified and stated simply, but their relevance is not clear and there is no attempt at logical linking.	1-2
	No relevant content	0
	Indicative content	
	 Rate higher temperature gives higher rate because more frequent collisions higher pressure gives higher rate because more frequent collisions a catalyst can be used to give a higher rate because the activation energy is reduced 	
	 Yield higher temperature gives lower yield because the reaction is exothermic higher pressure gives higher yield because there are more molecules on left hand side 	
	 Other factors higher temperatures use more energy so costs increase higher pressures use more energy so costs increase higher pressures require stronger reaction vessels so costs increase 	
	 Compromise chosen temperature is a compromise between rate and yield chosen temperature is a compromise between rate and cost (of energy used) chosen pressure is a compromise between rate and cost (of energy used) chosen pressure is a compromise between yield and cost (of energy used) 	
(d)	fermentation <i>allow ferment(ing)</i>	1
(e)	warm allow a value in the range 25 °C to 45 °C	1
	anaerobic (conditions) allow without oxygen / air	
		1

(f) (conversion) 200 km = 200,000 m

3.

	1	
(moles =) (moles =) $\frac{200000 \times 1.95 \text{ (mol)}}{1300}$ allow correct use of incorrect / no conversion for		
distance	1	
= 300 (mol)	1	
$C_4H_9OH + 6O_2 \rightarrow 4CO_2 + 5H_2O$ allow $C_4H_{10}O$ for C_4H_9OH		
allow multiples allow 1 mark for		
$C_4 H_9 OH + O_2 \rightarrow CO_2 + H_2 O$ with incorrect / no multipliers		
	2 [1	7]
enzyme	1	
2.0 × 10 ³ moles	1	
smaller yield		
allow less methanol is produced	1	
(because) favours endothermic reaction		
allow (because) favours reverse reaction allow equilibrium / reaction shifts to the left allow equilibrium / reaction shifts to reduce the temperature		
ignore reference to forward reaction is exothermic ignore references to rate	1	
	$ (moles =) (moles =) \frac{20000 \times 1.95 (mol)}{1300} allow correct use of incorrect / no conversion for distance = 300 (mol) C4H9OH + 6O2 \rightarrow 4CO2 + 5H2Oallow C4H10O for C4H9OHallow multiplesallow 1 mark forC4H9OH + O2 \rightarrow CO2 + H2Owith incorrect / no multipliersignore state symbolsenzyme2.0 × 103 molessmaller yieldallow less methanol is produced(because) favours endothermic reactionallow (because) favours reverse reactionallow (because) favours reverse reactionallow (because) favours reverse reactionallow equilibrium / reaction shifts to the leftallow equilibrium / reaction shifts to reduce thetemperatureignore reference to forward reaction is exothermicignore references to rate$	$(moles =) (moles =) \frac{200000 \times 1.95 (mol)}{1300}$ allow correct use of incorrect / no conversion for distance $= 300 (mol)$ $C_4H_9OH + 6O_2 \rightarrow 4CO_2 + 5H_2O$ allow $C_4H_{10}O$ for C_4H_9OH allow multiples allow 1 mark for $C_4H_9OH + O_2 \rightarrow CO_2 + H_2O$ with incorrect / no multipliers ignore state symbols 2 (renzyme 1 2.0 × 10 ³ moles 1 smaller yield 1 (because) favours endothermic reaction allow (because) favours reverse reaction allow (because) favours reverse reaction allow equilibrium / reaction shifts to the left allow equilibrium / reaction shifts to reduce the temperature ignore reference to forward reaction is exothermic ignore references to rate 1

(d)	(yield)	
	equilibrium position moves to the product side	
	allow equilibrium / reaction moves to the right	
	allow equilibrium / reaction shifts to reduce the pressure	1
	(heeevee) fewer melecules (melec (norticles on product side	
	(because) lewer molecules / moles / particles on product side	
	the right	
	allow (because) smaller volume on product side	
		1
	(rate)	
	more collisions per unit time	
	allow increases collision frequency / rate	
	ignore more collisions alone	
	Ignore faster collisions do not accept any indication of more energetic / forceful	
	collisions	
		1
	(because) more molecules / particles per unit volume	
	allow (gas) molecules / particles closer together	
	ignore more molecules / particles alone	
		1
	allow converse arguments	
(e)	provides different reaction pathway	
	allow provides a different mechanism / route	
		1
	(which has a) lower activation energy	
		1
	ignore references to collisions	
(f)	less energy is needed	
	allow reduces the temperature required	
	allow reduces costs	
	ignore references to pressure	
		1
(α)	no effect / change	
(9)	no enecci onange	1
		[12]

(b)

		1
	because more (gaseous) reactant molecules / particles than (gaseous) product molecules / particles	
	accept 7 \rightarrow 4 moles or volumes ignore more reactants	
	accept fewer particles on the right	1
(ii)	increased (rate) / faster / speeds up etc	
	two marks are linked	1
	more collisions or increased concentration or particles closer together	
	greater chance of more successful collisions	1
hea	t / high temperatures	
	do not accept burn it ignore cracking / catalyst	1
		1

[5]

(a) **2** marks for comments related to temperature

low / lower / lowest temperature (**or** 100 °C from graph) ignore references to catalyst

any one from:

5.

- (forward) reaction exothermic
 or reverse reaction endothermic
- if the temperature is increased the yield of product will decrease or reaction right to left

high temperature favours reverse reaction or reverse argument
the lower the temperature the greater the yield = 2 marks
2 marks for comments related to pressure

high / higher / highest pressure (or greater than 200 atm. from graph)

any one from:

- four reactant molecules but only two product molecules (owtte) reverse reaction goes from 2 molecules / moles / volumes to 4 molecules / moles / volumes
- increase in pressure favours the reaction which produces the least number of molecules
 - decrease in pressure favours the back reaction because it produces the most molecules

1

1

1

1

(b) any three from:

e.g. iron

6.

- at low temperatures the reaction is too slow
- 450 °C gives a reasonable yield at a fast rate / compromise between yield and rate (*)
- 200 atm. gives a reasonable yield at a reasonable cost / safely / compromise between yield and cost / safety (*)

(*) or 450°C and 200 atm / these are compromise conditions for **1** mark

- catalyst works better at higher temperature
- (very) high pressures could be dangerous (owtte) safety factor
- (very) high pressures are expensive (owtte)
- (yield is not too important because) unreacted gases can be recycled

(a) (i) high temperature accept temperature given if \geq 400 °C ignore value if "high" stated, unless silly value 1 endothermic or reaction takes in energy or Δ H is +ve independent marks 1 (ii) low pressure or up to and including 10 atmospheres 1 (low pressure) favours a reaction in which more molecules are formed 2 moles \rightarrow 4 moles (2 molecules \rightarrow 4 molecules) independent marks 1 (iii) <u>nickel</u> **and** it is a transition / transitional element / metal (owtte) or nickel and variable oxidation state / number or it is similar to other named transition elements

1

3

[7]

(b) (i) (bonds broken =) 2005 (kJ)

		1
	(bonds formed =) 2046 (kJ)	1
	energy change = 2005 – 2046 = (-)41	I
	for correct subtraction ignore sign	1
(ii)	(exothermic)	
	if in part (b)(i) answer is <u>not</u> 41 answer is consequential on endothermic or exothermic shown	
	accept correct reasoning for incorrect answer from (b)(i)	
	energy given out forming new bonds	
	do not accept energy <u>needed</u> to form new bonds	1
	greater than energy put in to break old bonds	
	accept exothermic and more energy given out than taken in for 1 mark	
	accept negative value for energy change or energy in products less than energy in reactants for 1 mark	
		1

[10]