
 GCSE Chemistry

Rate Experiments

Mark Scheme

Time available: 60 minutes Marks available: 57 marks

Mark schemes

1. (a) (diagram)
gas syringe
or
inverted measuring cylinder over water
(b) (error)
(delivery) tube is in (sulfuric) acid
(c) line of best fit must include 0, 0
(e) the line of best fit for higher concentration would have a steeper slope
(b) reaction has stopped
allow no more gas produced
(because a) reactant is used up allow named reactants
(c) any one from:

- the line (for $0.05 \mathrm{~mol} / \mathrm{dm}^{3}$ sulfuric acid) is less steep
allow converse statements about $0.10 \mathrm{~mol} / \mathrm{dm}^{3}$ sulfuric acid
ignore produces less gas
- $\quad\left(0.05 \mathrm{~mol} / \mathrm{dm}^{3}\right.$ sulfuric acid) produces less gas in a fixed time do not accept produces less gas in total
- the reaction (using $0.05 \mathrm{~mol} / \mathrm{dm}^{3}$ sulfuric acid) takes longer to finish
answer to 2 significant figures
allow an answer correctly calculated to 2 significant figures from an incorrect calculation of rate
(e) Cu^{2+}

3. (a) glowing splint
do not accept burning splint
(which) relights
dependent on correct test in MP1
ignore with a pop
(b) place the conical flask in a water bath at constant temperature.
use a mass of 1 g manganese dioxide each time.
(c)
an answer of $0.092\left(\mathrm{~cm}^{3} / \mathrm{s}\right)$ scores 3 marks
allow an answer of $0.091666\left(\mathrm{~cm}^{3} / \mathrm{s}\right)$ correctly rounded to at least 2 significant figures for 2 marks
allow an answer of $0.033\left(\mathrm{~cm}^{3} / \mathrm{s}\right)$ for 2 marks allow an answer of $0.033333\left(\mathrm{~cm}^{3} / \mathrm{s}\right)$ for 1 mark
$11\left(\mathrm{~cm}^{3}\right)$ and 120 (seconds)
4. (a) gives out energy or heat
(b) (i) accept qualified answers in terms of volume of gas related to time fast initially
slows down
reaction stops
accept reaction is now very slow
(b) (ii) 21
(iii) 84
correct answer with or without working $=2$ marks
allow ecf from (b)(ii) correctly calculated for 2 marks
allow evidence of 21/25 or (b)(ii)/25 for 1 mark
2
(c) because they / particles have more energy / move faster ignore particles move more / vibrate 1
(and so) particles collide more often / more frequently or particles more likely to collide ignore collide faster
ignore more collisions
(and) more of the collisions are successful or particles collide with more energy / harder or more of the particles have the activation energy
accept more successful collisions
1
[10]
5. (a) (sulfur is a) precipitate / solid
(sulfur is an) insoluble substance
(b) View with Figure 1
correctly drawn tangent at 30 s
correct values for x step and y step from tangent
allow correct use of an incorrectly drawn tangent
allow a tolerance of $\pm 1 / 2$ a small square for each coordinate

$$
\begin{aligned}
(\text { ratio }= & \frac{\text { value for } y \text { step }}{\text { value for } x \text { step }} \\
& \begin{array}{l}
\text { allow correct use of incorrectly determined values from tangent for } x \\
\text { step and/or } y \text { step }
\end{array}
\end{aligned}
$$

correct calculation of ratio
(conversion rate $=$ ratio $\times 7.1 \times 10^{-5}$)
correct evaluation of rate ($\mathrm{mol} / \mathrm{s}$)
allow correct use of an incorrectly calculated ratio
(c) rate decreases
allow the collision frequency decreases
(because) concentration of reactants decreases
alternative approach:
greatest rate at start (1)
allow the collision frequency is highest at the start
(because) greatest concentration of reactants at start (1)
(d) (hydrochloric) acid is used up allow (hydrochloric) acid is the limiting reactant ignore reactants used up
(e) View with Figure 3
decreasing curve starting at 0,95 and steeper initially than curve for 0.10 $\mathrm{mol} / \mathrm{dm}^{3}$ sodium thiosulfate solution
levelling at 24%
(f) stop light from other sources reaching the light sensor
(g) repeatable
(i) View with Figure 4
volume of sodium thiosulfate solution and volume of hydrochloric acid at any fixed mass
allow a tolerance of $\pm 1 / 2$ a small square for volume readings
$\left(\frac{\text { volume of } \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} \text { solution }}{\text { volume of hydrochloric acid }}=\right) 0.25$

$$
\begin{aligned}
& \text { allow }\left(\frac{\text { volume of hydrochloric acid }}{\text { volume of } \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} \text { solution }}=\right) 4 \\
& \text { allow correct use of incorrectly determined volumes }
\end{aligned}
$$

$1: 4$
[17]

