

GCSE Chemistry Reversible Reactions and Dynamic Equilibrium Mark Scheme

Time available: 65 minutes Marks available: 62 marks

www.accesstuition.com

Mark schemes

1

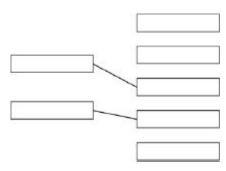
1

1

1

1

- 1.
- (a) reactant
- (b) reversible
 - b) Teveraliste
- (c) blue


= 36 (%)

allow shades of blue, e.g. pale blue

- (d) 1.6 (g)
- (e) $\frac{0.9}{2.5} \times 100$

an answer of 36 (%) scores **2** marks

(f)

copper sulfate - CuSO₄

Natural gas

water - H₂O

[8]

1

1

1

1

- 2.
- (a) 4
- (b) reversible (reaction)

Hydrogen Alcohol
Ammonia
Nitrogen Iron

	(d)	−40 °C	1	1	Access Tuition
	(e)	recycled to	o the reactor		www.accesstuition.com
	(f)	ionic			1
	(a)	nitrogon			1
	(g)	nitrogen			1
		phosphoru	us		1
	(h)	0.24 × 50	× 5 allow £87.50		
		= £60			1
			an answer of £60 scores 2 marks		1
	(i)	may need	to use nitrogen, phosphorus and potassium allow neither fertiliser has all the elements / nutrients needed.		[12]
3.	(a)	endothermic			1
	(b)	82 (%)	correct answer with working gains 3 marks		
			if 17 or 34 not shown in working max 2 marks		
			accept 82.4 accept 82.35 to full calculator display (82.35294) correctly rounded to at least 2 sf		
			if no answer or incorrect answer, then		
			$(M_r =)$ 17 gains 1 mark or 14/17 gains 2 marks		
			OR $(2M_r =) 34 \text{ gains } 1 \text{ mark } \mathbf{or}$		
			28/34 gains 2 marks OR		
			14/their M _r shown gains 1 mark or		
			correct calculation of 14/their M _r gains 2 marks		3
	(c)	(i) 7 / s	even		1
		(ii) H ⁺ +	$\cdot \text{OH}^- \rightarrow \text{H}_2\text{O}$		
					1

ignore an incorrect formula

(d) Marks awarded for this answer will be determined by the Quality of Written Communication (QWC) as well as the standard of the scientific response. Examiners should also apply a 'best-fit' approach to the marking.

Level 3 (5 - 6 marks):

Suggestion with reasons from all three graphs, and linking of ideas which may explain a compromise.

Level 2 (3 – 4 marks):

Suggestion with reasons referring to more than one graph.

Level 1 (1 - 2 marks):

Suggestion with a reference to a graph.

0 marks:

No relevant content.

Examples of chemistry points made in response:

A reasonable suggested amount of fertiliser would be in the region of 200 kg (per ha). Accept any suggestion from about 180 kg (per ha) to 500 kg (per ha).

Yield:

- Using fertiliser improves yield.
- Yield improved most up to about 200 kg (per ha) of fertiliser.
- Yield only increased slightly above about 200 kg (per ha).

Profit:

- About 200 kg of fertiliser gives the most profit.
- Above about 200 kg (per ha) of fertiliser profit declines.

Run off:

- Run off is at low levels until about 300 kg (per ha) of fertiliser.
- Above about 300 kg (per ha) of fertiliser, run off increases.

Examples of linking of ideas:

- Overall 200 kg gives high crop yield and most profit.
- In conclusion 200 kg gives high crop yield and low run off.
- 200 kg gives most profit and low run off.

Examples of compromise:

- Profits go down after about 200 kg (per ha) of fertiliser because cost of fertiliser is not covered by increased yield.
- 200 kg gives the highest profit although it is not the highest yield.
- 500 kg gives the best yield but has the most runoff.

[13]

5.

(a) water

accept H₂O or 5H₂O

(a catalyst) lowers the activation energy (1)

so less energy is needed to react **or** more particles react (1)

2 must be below halfway

1

1

[9]

	(b)	the	cold water / ice / cubes (owtte) accept 'cooled down' or references to cold 1	Tuition
				www.accesstuition.com
	(c)	reve	ersible reaction	
	<i>(</i> 1)	<i>(</i> ')	0.07	1
	(d)	(i)	0.87g	1
		(ii)	the student made errors in weighing during the experiments	
				1
			the student did not heat the copper sulfate for long enough in one of t	he experiments 1
	(e)	whit	е	
				1
		blue	e allow 1 mark for blue to white	
			allow I mark for blue to write	1
				[8]
	(a)	enzy	/me	
6.	(-)	- ,		1
	(b)	2.0 >	× 10 ³ moles	
				1
	(c)	sma	ller yield	
			allow less methanol is produced	1
		(bed	cause) favours endothermic reaction	
			allow (because) favours reverse reaction	
			allow equilibrium / reaction shifts to the left allow equilibrium / reaction shifts to reduce the	
			temperature	
			ignore reference to forward reaction is exothermic ignore references to rate	
			ignore references to rate	1

(d)	(yield) equilibrium position moves to the product side allow equilibrium / reaction moves to the right	Access Tuition www.accesstuition.com
	allow equilibrium / reaction shifts to reduce the pressure	1
	(because) fewer molecules / moles / particles on product side	
	allow (because) fewer molecules / moles / particles on the right	
	allow (because) smaller volume on product side	1
	(rate)	
	more collisions per unit time	
	allow increases collision frequency / rate	
	ignore more collisions alone	
	ignore faster collisions	
	do not accept any indication of more energetic / forceful collisions	
		1
	(because) more molecules / particles per unit volume	
	allow (gas) molecules / particles closer together	
	ignore more molecules / particles alone	
	allow converse erguments	1
	allow converse arguments	
(e)	provides different reaction pathway	
	allow provides a different mechanism / route	
		1
	(which has a) lower activation energy	1
	ignore references to collisions	1
(f)	less energy is needed	
	allow reduces the temperature required allow reduces costs	
	ignore references to pressure	
	ignore references to rate or time	4
		1
(g)	no effect / change	1

[12]