

GCSE Chemistry Reversible Reactions and Dynamic Equilibrium Question Paper

Time available: 65 minutes Marks available: 62 marks

www.accesstuition.com

1.	This	question is about coppe	r sulfate.		Access Tuitio
	Blue	copper sulfate turns whi	ite when it is heated.		www.accesstuition.com
	The	word equation for the rea	action is:		
		hydrated copp	per sulfate ⇌ anhydrou	us copper sulfate + water	
		blu	e	white	
	(a)	What name is given to	hydrated copper sulfate ir	n this reaction?	
		Tick one box.			
		Catalyst			
		Element			
		Product			
		Reactant			
					(1)
	(b)	What does the symbol	≓ mean?		
		Tick one box.			
		Endothermic			

(1)

Exothermic

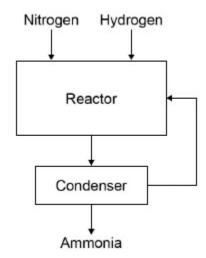
Reversible

Polymerisation

(c)	Complete the sentence. The colour change when the water is added to anhydrous copper sulfate.	Access Tuition.	DI
	is white to	1	(1)
A stu	tudent heats 2.5 g of hydrate copper sulfate in a test tube.	(',
0.9 დ	g of water is given off.		
The	e remaining solid is anhydrous copper sulfate.		
(d)	Calculate the mass of anhydrous copper sulfate produced.		
	Mass of anhydrous copper sulfate =	_	·0\
(e)	Calculate the percentage of water contained in 2.5 g of hydrated copper	sulfate.	(2)
	Percentage of water =		

(f) Draw **one** line from each compound to the formula for the compound. Compound Formula for the compound CuO Copper sulfate CuS CuSO₄ H₂O Water H₂SO₄ (2) (Total 8 marks) The Haber Process is used to produce ammonia from nitrogen and hydrogen. The equation for the reaction is: $3H_2 \rightleftharpoons$ $2NH_3$ An ammonia molecule has the formula NH₃ (a) How many atoms are there in one molecule of ammonia? Tick (**√**) **one** box. (1) (b) What does the symbol \rightleftharpoons mean?

2.


(1)

(c) Draw **one** line from each gas to the source of that gas.

Gas	Source	www.accesstuition.com
	Air	
Hydrogen	Alcohol	
	Ammonia	
Nitrogen	Iron	
	Natural gas	

A mixture of ammonia, hydrogen and nitrogen gases leave the reactor.

Table 1 shows the boiling points of the gases.

Table 1

Gas	Boiling point in °C
Ammonia	– 33
Nitrogen	– 196
Hydrogen	– 253

(d) The mixture is cooled to a temperature at which **only** the ammonia condenses to a liquid.

Which temperature could be used?

Tick (**√**) **one** box.

(e)	What happens t	to the unreacted nitrogen?		Access
	Tick (√) one bo	х.		www.accesstuition.com
	Collected and	sold		
	Recycled to the	e reactor		
	Released into t	he air		
	Used as a cata	lyst		
				(1)
Amn	nonia from the Ha	aber process can be used to pro	duce fertilisers.	
Tabl	e 2 gives informa	tion about two compounds used	l in fertilisers.	
		Table 2		
	Fertiliser	Compound	Cost in £ / kg	
	А	Potassium chloride	0.24	
	В	Diammonium phosphate	0.35	
(f)	What type of bo	nding is present in potassium ch	nloride?	
	Tick (√) one bo	x.		
	Covalent			
	Ionic			
	Metallic			
				(1)

(g)	Diammonium phosphate has the chemical formula (NH ₄) ₂ HPO ₄	Access
	Which two elements in (NH ₄) ₂ HPO ₄ improve agricultural productivity?	www.accesstuition.com
	Tick (✓) two boxes.	
	Chlorine	
	Hydrogen	
	Nitrogen	
	Oxygen	
	Phosphorus	
A fa	rmer uses fertilisers A and B on a field with an area of 0.05 km ²	(2)
(h)	50 kg of fertiliser A will cover an area of 0.01 km ²	
	Calculate the cost of fertilising a field with an area of 0.05 km ² with fertiliser A .	
	Use Table 2 .	
	Cost = £	(2)
(i)	Fertiliser B is more expensive than fertiliser A .	(2)
	Suggest why the farmer uses both fertilisers.	
		(1) (Total 12 marks)

This question is about ammonia and fertilisers.

Access Tuition

(a) Ammonia is produced by a reversible reaction.

The equation for the reaction is:

$$N_2 + 3H_2 = 2NH_3$$

Complete the sentence.

Т	he forward	reaction	is	exothermic,	so tl	he	reverse	reaction
	nc ioiwaia	1 Caction	ı	CAULICITIIO,	30 ti		10100	1 Caction

is _____

(1)

(b)	Calculate the percentage by mass of nitrogen in ammonia (NH ₃).
	Relative atomic masses (A_r) : H = 1; N = 14

You **must** show how you work out your answer.

Percentage by mass of nitrogen = _____ %

(3)

- (c) A neutral solution can be produced when ammonia reacts with an acid.
 - (i) Give the pH of a neutral solution.

pH _____

(1)

(ii)	Which of these ionic equations shows a ne	eutralisation reaction?

Tick (**√**) **one** box.

$$H^+ + OH^- \longrightarrow H_2O$$

$$NH_4^+ + OH^- \longrightarrow NH_4OH$$

$$H^+ + CI^- \longrightarrow HCI$$

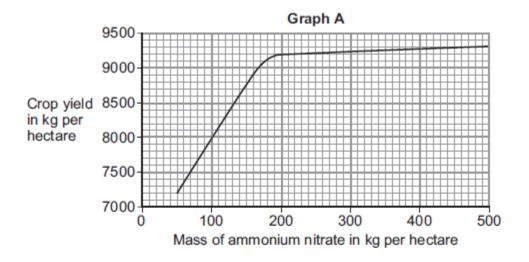
$$H^+ + H_2O \longrightarrow H_3O^+$$

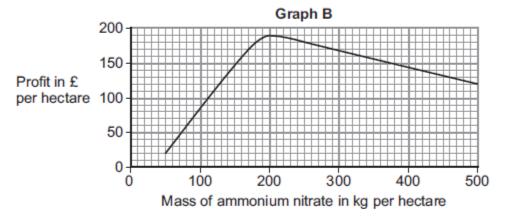
(1)

(iii) Name the salt produced when ammonia reacts with hydrochloric acid.

(1)

(d) In this question you will be assessed on using good English, organising information clearly and using specialist terms where appropriate.




Farmers use ammonium nitrate as a fertiliser for crops.


Rainwater dissolves ammonium nitrate in the soil.

Some of the dissolved ammonium nitrate runs off into rivers and lakes.

The graphs **A**, **B** and **C** below show information about the use of ammonium nitrate as a fertiliser. A hectare is a measurement of an area of land.

Suggest how much ammonium nitrate farmers should use per hectare.

Give reasons for your answer.	Access Tuitio
Use information from graphs A, B and C.	www.accesstuition.com
	(6)
	(0)

www.accesstuition.com

(Total 13 marks)

4.

A company manufactures ethanol (C_2H_5OH).

The reaction for the process is:

ain what is meant by equilibrium.
an matic mean by equilibrian
How would increasing the temperature change the yield of ethanol at equilibriur
Give a reason for your answer.
Give a reason for your answer.
How would increasing the pressure change the yield of ethanol at equilibrium?
Give a reason for your answer.
Cive a reason for your answer.

	(c)	A catalyst is added to increase the rate of the reaction.	Access
		Explain how adding a catalyst increases the rate of a chemical reaction.	www.accesstuition.com
			(2)
5.		udent heated some hydrated copper sulfate crystals. equation for this reaction is shown below.	(Total 9 marks)
	hydr	CuSO ₄ .5H ₂ O(s) — CuSO ₄ (s) + 5H ₂ O(1) rated copper sulfate crystals anhydrous copper sulfate water	
	The	diagram shows the apparatus used.	
	(0)	Hydrated copper sulfate crystals Vapour Heat Liquid A	
	(a)	Name liquid A	(1)
	(b)	What helped the vapour to condense into liquid A ?	

(c) Put a tick (✓) next to the correct meaning of the symbol =

Meaning	(v ′)
equal amounts of reactants and products	
exothermic reaction	
reversible reaction	

(1)

(d) The student weighed the copper sulfate before and after it was heated.

The experiment was repeated and the two sets of results are shown in the table.

Mass of copper sulfate before heating in grams	Mass of copper sulfate after heating in grams	Mass lost in grams
2.50	1.65	0.85
2.50	1.61	0.89

(i) Draw a ring around the **average** mass lost for these two sets of results.

0.85 g 0.87 g 0.89 g

(1)

(ii) The student used the same mass of copper sulfate each time but the mass lost was different.

Put a tick (\checkmark) next to the **two** reasons which could explain why the mass lost is different.

Reason	(v´)
The student used different test tubes for the two experiments.	
The student made errors in weighing during the experiments.	
The student used more ice in one of the experiments.	
The student did not heat the copper sulfate for long enough in one of the experiments.	

	(e)	Anhydrous coppe	er sulfate is use	ed to test for	water.	Access
		Use words from t	he box to com	plete the se	ntence.	www.accesstuition.com
		blue	green	red	white	
		Water changes th	ne colour of an	hydrous cop	oper sulfate from	
			to		·	
						(2) (Total 8 marks)
6.	This	question is about r	methanol.			
	(a)	Methanol is broke	n down in the	body during	digestion.	
		What type of subs	stance acts as	a catalyst ir	this process?	
		Tick one box.				
		Amino acid				
		Enzyme				
		Ester				
		Nucleotide				
						(1)

In industry, methanol is produced by reacting carbon monoxide with hydrogen.

The equation for the reaction is:

 $CO(g) + 2H_2(g) = CH_3OH(g)$

	100	
(b)	How many moles of carbon monoxide react completely with 4.0×10^3 moles of hydrogen?	
	Tick one box.	
	1.0×10^3 moles	
	2.0×10^3 moles	
	4.0×10^3 moles	
	8.0×10^3 moles	
		(1
(c)	The reaction is carried out at a temperature of 250 °C and a pressure of 100 atmospheres.	
	The forward reaction is exothermic.	
	Explain what happens to the yield of methanol if a temperature higher than 250 °C is used.	
		(0)
		(2

(d)	A pressure of 100 atmospheres is used instead of atmospheric pressure.	Access Tuition
	The higher pressure gives a greater yield of methanol and an increased rate of	www.accesstuition.com
	reaction. Explain why.	
		_
A ca	atalyst is used in the reaction to produce methanol from carbon monoxide and hydrog	jen.
(e)	Explain how a catalyst increases the rate of a reaction.	
		(2)
(f)	Suggest why a catalyst is used in this industrial process.	
	Do not give answers in terms of increasing the rate of reaction.	
		_

www.accesstuition.com

(g)	Suggest the effect of using the catalyst on the equilibrium yield of methanol.				
		(1)			
	(Total 12	2 marks)			