

GCSE Chemistry

Titration Practical

Mark Scheme

Time available: 62 minutes Marks available: 58 marks

1. (a) B
(b) C
(c) zinc (oxide) allow ZnO
sulfuric (acid)

$$
\text { allow } \mathrm{H}_{2} \mathrm{SO}_{4}
$$

(d)

Colour of universal indicator

\square

Yellow
do not accept more than one line from a box on the left
(e) neutralisation
(f) burette
2. (a) H^{+}
(b) neutralisation
(c) $\mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{KOH} \rightarrow \mathrm{K}_{2} \mathrm{SO}_{4}+2 \mathrm{H}_{2} \mathrm{O}$ allow multiples
(d) 14
(e) pipette

1
(f) add potassium hydroxide (solution) to the (conical) flask
add (a few drops of) indicator
add the (sulfuric) acid (from the burette)
until the colour (of the indicator) changes
read the volume from the burette
3. (a) nitric acid
(b) zinc oxide
(c) magnesium bromide
(d) (from 0) to $20 \mathrm{~cm}^{3}$ the pH increases (gradually)
allow a tolerance of $1 \mathrm{~cm}^{3}$ on volumes allow a tolerance of 0.2 on pH values allow increase from pH 1 to pH 3

1
at $20 \mathrm{~cm}^{3}$ the pH changes from pH 3 to pH 11
allow sudden / steep increase at $20 \mathrm{~cm}^{3}$ allow sudden / steep increase from pH 3 to pH 11
from $20 \mathrm{~cm}^{3}$ the pH increases (gradually)
allow (gradual) increase from pH 11
if no other marks awarded allow 1 mark for a description of the three stages with no values used.
(e) $20\left(\mathrm{~cm}^{3}\right)$ allow $20.0\left(\mathrm{~cm}^{3}\right)$
(f) red
(g)
$\frac{0.06}{25(.0)} \times 100$
$=0.24$ (\%)
(h) (pipette) measures volume more accurately
or
(pipette has a) smaller (percentage) uncertainty allow (pipette is) more accurate
4. (a) didn't stir (the solution enough)
allow measured the temperature before the temperature stopped falling allow measured the temperature too soon
(b) the temperature decreases (initially) because energy is taken in (by the reaction from the solution)
allow temperature decreases (initially) because the reaction is endothermic
when 1.5 g (of citric acid) is added the sodium hydrogencarbonate has all reacted
allow when the temperature reaches $11.6{ }^{\circ} \mathrm{C}$ the sodium hydrogencarbonate has all reacted

or

from 1.5 g the citric acid is in excess
allow after the temperature reaches $11.6^{\circ} \mathrm{C}$ the citric acid is in excess
or
when 1.5 g (of citric acid) is added the reaction is complete allow when the temperature reaches $11.6{ }^{\circ} \mathrm{C}$ the reaction is complete
(so) the temperature increases as energy is transferred from the room to the solution allow (so) the temperature increases as energy is transferred from the excess citric acid to the solution
(c) less steep line starting at $16.8^{\circ} \mathrm{C}$ and reaching 1.00 g (of citric acid) ignore any part of the line drawn beyond 1.00 g
(as) metal is a better conductor allow (as) polystyrene is a better insulator
(so) more energy is absorbed (from the surroundings) allow (so) more heat is absorbed (from the surroundings)
(d) $\quad\left(M_{r}\right.$ citric acid $\left.=\right) 192$

$$
\begin{aligned}
& \left(\text { moles }=\frac{250}{1000} \times 0.0500\right)=0.0125 \\
& (\text { mass }=0.0125 \times 192=) 2.4(\mathrm{~g})
\end{aligned}
$$

allow correct use of an incorrectly calculated M_{r} allow correct use of an incorrectly calculated number of moles
alternative approach:
(M_{r} citric acid $=$) $192(1)$
(concentration $=0.0500 \times 192$)
$=9.6\left(\mathrm{~g} / \mathrm{dm}^{3}\right)(1)$
allow correct use of an incorrectly calculated M_{r}
(mass $\left.=\frac{250}{1000} \times 9.6=\right) 2.4(\mathrm{~g})(1)$
allow correct use of an incorrectly calculated concentration in $\mathrm{g} / \mathrm{dm}^{3}$
(e) add the citric acid (to the flask) until there is a (permanent) colour change ignore colours of indicator
measure / record the volume (of citric acid) added allow take the final (and initial) burette reading
any one from:

- swirl
- use a white tile
- add the citric acid dropwise (near the end-point)
- repeat and calculate a mean
allow add the citric acid slowly (near the end-point)
(f) any two from:
- can add (the citric acid) in small increments allow can add (the citric acid) drop by drop allow can add (the citric acid) slowly
- can measure variable volumes allow has a scale 2
- more accurate than a measuring cylinder
(g) $\quad\left(\right.$ moles citric acid $\left.=\frac{13.3}{1000} \times 0.0500\right)=0.000665$
$($ moles $\mathrm{NaOH}=3 \times 0.000665)=0.001995$
allow correct use of an incorrectly calculated number of moles of citric acid

$$
\begin{aligned}
& \left(\text { conc }=\frac{1000}{25} \times 0.001995\right)=0.0798\left(\mathrm{~mol} / \mathrm{dm}^{3}\right) \\
& \quad \begin{array}{l}
\text { allow } 0.08 \text { or } 0.080\left(\mathrm{~mol} / \mathrm{dm}^{3}\right) \\
\\
\quad \text { allow correct use of an incorrectly calculated number of } \\
\text { moles of } \mathrm{NaOH}
\end{array}
\end{aligned}
$$

alternative approach:

$$
\begin{aligned}
& \frac{25.0 \times \text { conc } \mathrm{NaOH}}{13.3 \times 0.0500}=\frac{3}{1}(1) \\
& \text { allow } \frac{13.3 \times 0.0500}{25.0 \times \operatorname{conc~} \mathrm{NaOH}}=\frac{1}{3} \\
& (\mathrm{conc} \mathrm{NaOH}=) 3 \times \frac{13.3 \times 0.0500}{25.0}(1) \\
& =0.0798\left(\mathrm{~mol} / \mathrm{dm}^{3}\right)(1) \\
& \text { allow } 0.08 \text { or } 0.080\left(\mathrm{~mol} / \mathrm{dm}^{3}\right)
\end{aligned}
$$

5. (a) H^{+}
(b) hydrochloric (acid) allow HCl
water
allow $\mathrm{H}_{2} \mathrm{O}$
(c) burette
(d) $27.6\left(\mathrm{~cm}^{3}\right)$ allow $27.60\left(\mathrm{~cm}^{3}\right)$
(e) Level 3: The design/plan would lead to the production of a valid outcome. All key steps are identified and logically sequenced.

$$
5-6
$$

Level 2: The design/plan would not necessarily lead to a valid outcome. Most steps are identified, but the plan is not fully logically sequenced.

Level 1: The design/plan would not lead to a valid outcome. Some relevant steps are identified, but links are not made clear.

No relevant content

Indicative content

allow converse using acid added to alkali
Key steps

- measure the volume of acid
- add indicator to the acid
- add sodium hydroxide solution
- until the colour changes
- record volume of sodium hydroxide solution added
- repeat procedure with the other acid

Use of results

- compare the two volumes of sodium hydroxide solution to find which sample \mathbf{P} or \mathbf{Q} is more concentrated

Other points

- pipette to measure volume of acid
- use a few drops of indicator
- swirl
- use a white tile
- rough titration to find approximate end point
- add dropwise near the endpoint
- read volume from bottom of meniscus
- repeat and take a mean

