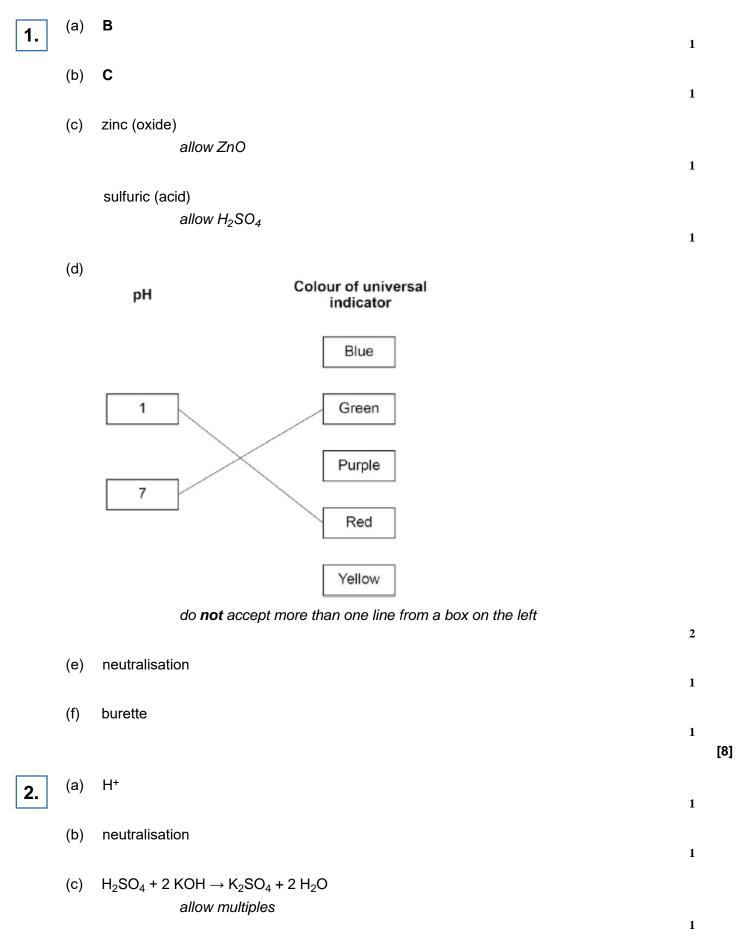


GCSE Chemistry


Titration Practical

Mark Scheme

Time available: 62 minutes Marks available: 58 marks

www.accesstuition.com

Mark schemes

	(d)	14	1
	(e)	pipette	1
	(f)	add potassium hydroxide (solution) to the (conical) flask	1
		add (a few drops of) indicator	1
		add the (sulfuric) acid (from the burette)	1
		until the colour (of the indicator) changes	1
		read the volume from the burette	1
			[10]
3.	(a)	nitric acid	1
	(b)	zinc oxide	1
	(c)	magnesium bromide	1
	(d)	(from 0) to 20 cm ³ the pH increases (gradually)	
		allow a tolerance of 1 cm ³ on volumes allow a tolerance of 0.2 on pH values	
		allow increase from pH 1 to pH 3	1
		at 20 cm ³ the pH changes from pH 3 to pH 11	
		allow sudden / steep increase at 20 cm ³ allow sudden / steep increase from pH 3 to pH 11	1
		from 20 cm ³ the pH increases (gradually)	1
		allow (gradual) increase from pH 11 if no other marks awarded allow 1 mark for a description of the three stages with no values used.	
			1
	(e)	20 (cm ³) <i>allow 20.0 (cm³)</i>	1
	(f)	red	1
	(')		1

4.

1

(c)	less steep line starting at 16.8 °C and reaching 1.00 g (of citric acid) <i>ignore any part of the line drawn beyond 1.00 g</i>	1
	(as) metal is a better conductor allow (as) polystyrene is a better insulator	1
	(so) more energy is absorbed (from the surroundings) allow (so) more heat is absorbed (from the surroundings)	1
(d)	$(M_{\rm r} {\rm citric} {\rm acid} =) 192$	•
	$(\text{moles} = \frac{250}{1000} \times 0.0500) = 0.0125$	
	(mass = 0.0125 × 192 =) 2.4 (g)	1
	allow correct use of an incorrectly calculated M _r allow correct use of an incorrectly calculated number of moles	-
	alternative approach:	1
	$(M_{\rm r} {\rm citric acid} =) 192 (1)$	
	(concentration = 0.0500 × 192) = 9.6 (g/dm ³) (1) allow correct use of an incorrectly calculated M_r	
	$(mass = \frac{250}{1000} \times 9.6 =) 2.4 (g) (1)$	
	allow correct use of an incorrectly calculated concentration in g/dm ³	
(e)	add the citric acid (to the flask) until there is a (permanent) colour change <i>ignore colours of indicator</i>	1
	measure / record the volume (of citric acid) added allow take the final (and initial) burette reading	1
	any one from: • swirl	I
	 use a white tile add the citric acid dropwise (near the end-point) repeat and calculate a mean 	
	allow add the citric acid slowly (near the end-point)	1

www.accesstuition.com

- (f) any **two** from:
 - can add (the citric acid) in small increments allow can add (the citric acid) drop by drop allow can add (the citric acid) slowly
 - can measure variable volumes
 allow has a scale 2
 - more accurate than a measuring cylinder

2

1

1

1

- (g) (moles citric acid = $\frac{13.3}{1000} \times 0.0500$) = 0.000665
 - (moles NaOH = 3 × 0.000665) = 0.001995 allow correct use of an incorrectly calculated number of moles of citric acid

$$(\operatorname{conc} = \frac{1000}{25} \times 0.001995) = 0.0798 \ (\operatorname{mol/dm^3})$$

allow 0.08 or 0.080 (mol/dm³) allow correct use of an incorrectly calculated number of moles of NaOH

alternative approach:

$$\frac{25.0 \times \text{conc NaOH}}{13.3 \times 0.0500} = \frac{3}{1} (1)$$

$$allow \ \frac{13.3 \times 0.0500}{25.0 \times \text{conc NaOH}} = \frac{1}{3}$$
(conc NaOH =) $3 \times \frac{13.3 \times 0.0500}{25.0} (1)$

5.

(a)

(b) hydrochloric (acid) allow HCI

water

H+

allow
$$H_2O$$

[18]

1

1

1

(c) burette

do not accept biuret

		1		
(d)	27.6 (cm ³) <i>allow 27.60 (cm³)</i>	1		
(e)	Level 3: The design/plan would lead to the production of a valid outcome. All key steps are identified and logically sequenced.	5–6		
	Level 2: The design/plan would not necessarily lead to a valid outcome. Most steps are identified, but the plan is not fully logically sequenced.	3–4		
	Level 1: The design/plan would not lead to a valid outcome. Some relevant steps are identified, but links are not made clear.			
	No relevant content	0		
	Indicative content allow converse using acid added to alkali			
	 Key steps measure the volume of acid add indicator to the acid add sodium hydroxide solution until the colour changes record volume of sodium hydroxide solution added repeat procedure with the other acid 			
	 Use of results compare the two volumes of sodium hydroxide solution to find which sample P or Q is more concentrated 			
	Other points			
	 pipette to measure volume of acid use a few drops of indicator swirl use a white tile rough titration to find approximate end point add dropwise near the endpoint read volume from bottom of meniscus repeat and take a mean 			

[11]