

GCSE Chemistry

Titration Practical

Question Paper

Time available: 62 minutes Marks available: 58 marks

1. This question is about acids.

A student added four metals, A, B, C and D to hydrochloric acid.
Figure 1 shows the rate of bubbling in each tube.

Figure 1

Use Figure 1 to answer parts (a) and (b).
(a) Which metal is copper?

Tick (\checkmark) one box.
A

B

C

D

(b) Which metal is the most reactive?

Tick (\checkmark) one box.
A

B \square
C \square
D \square
(c) A metal oxide reacts with an acid to produce zinc sulfate and water.

Name the metal oxide and the acid used in this reaction.
Name of metal oxide \qquad
Name of acid \qquad
(d) Universal indicator is used to measure the pH of a solution.

Draw one line from each pH to the colour of universal indicator in a solution with that pH .

Colour of universal

 indicator\square
Blue
\square
Purple

Yellow

A student reacts an acid with an alkali in a titration.
(e) What is the type of reaction when an acid reacts with an alkali?

Tick (\checkmark) one box.

Combustion

Decomposition

Neutralisation \square
(f) Figure 2 shows a piece of equipment used to measure the volume of the acid in the titration.

Figure 2

What is the name of this piece of equipment?
Tick $(\sqrt{ })$ one box.

Burette \square

Pipette \square

Syringe

Tube
2. This question is about acids and alkalis.
(a) Which ion do acids produce in aqueous solution?

Tick (\checkmark) one box.

(b) Acids react with alkalis.

What is the name of this type of reaction?
Tick (\checkmark) one box.

Decomposition

Electrolysis

Neutralisation

Redox

(c) Balance the equation for the reaction between sulfuric acid and potassium hydroxide.

$$
\mathrm{H}_{2} \mathrm{SO}_{4}+\ldots \ldots \mathrm{KOH} \rightarrow \mathrm{~K}_{2} \mathrm{SO}_{4}+\ldots \mathrm{H}_{2} \mathrm{O}
$$

(d) Universal indicator turns purple in potassium hydroxide solution.

What is the pH of the solution?
Tick (\checkmark) one box.
$1 \square$

$14 \square$

A student does a titration to find the volume of sulfuric acid that reacts with $25 \mathrm{~cm}^{3}$ of potassium hydroxide solution.

The figure below shows the equipment used.

(e) The $25 \mathrm{~cm}^{3}$ of potassium hydroxide solution is measured with the measuring cylinder.

Which piece of equipment could the student use to measure the $25 \mathrm{~cm}^{3}$ of potassium hydroxide solution more accurately?

Tick (\checkmark) one box.

Beaker

Evaporating basin

\square

Pipette

Test tube
\square

(f) Describe how the student would use the equipment in the figure above to complete the titration.
\qquad
3. This question is about acids, bases and salts.

Zinc nitrate is a salt.
A student produces zinc nitrate using an acid and a base.
(a) Which acid should the student use to produce zinc nitrate?

Tick ($\sqrt{ }$) one box.

Hydrochloric acid \square

Nitric acid

Sulfuric acid \square
(b) Which is a base the student could use to produce zinc nitrate?

Tick (\checkmark) one box.

Zinc chloride \square

Zinc oxide

Zinc sulfate

(c) Name the salt with the formula MgBr_{2}
\qquad

A student investigated how pH changes during a titration.
This is the method used.

1. Pour $25.0 \mathrm{~cm}^{3}$ of hydrochloric acid into a beaker.
2. Measure the pH of the hydrochloric acid with a pH probe.
3. Add $1.0 \mathrm{~cm}^{3}$ of sodium hydroxide solution from a burette.
4. Swirl the mixture.
5. Measure the pH of the mixture.
6. Repeat steps 3 to 5 until a total of $30.0 \mathrm{~cm}^{3}$ of sodium hydroxide solution has been added.

The graph below shows the student's results.

Volume of sodium hydroxide solution added in cm^{3}
(d) Describe how the pH of the mixture changes as sodium hydroxide solution is added to hydrochloric acid.

Use the data from the graph above in your answer.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(e) What volume of sodium hydroxide solution is needed to neutralise $25.0 \mathrm{~cm}^{3}$ of hydrochloric acid?

Use the graph above.

$$
\text { Volume }=\ldots \mathrm{cm}^{3}
$$

(f) Figure 1 shows the colour of universal indicator at different pH values.

Figure 1

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14

The student could have used universal indicator instead of a pH probe.
Determine the colour of universal indicator when $10.0 \mathrm{~cm}^{3}$ of sodium hydroxide solution has been added to $25.0 \mathrm{~cm}^{3}$ of hydrochloric acid.

Use the graph above and Figure 1.
Colour = \qquad
(g) The student used a pipette to measure $25.0 \mathrm{~cm}^{3}$ of hydrochloric acid.

Figure 2 shows a pipette.
Figure 2

The pipette is labelled $25.0 \pm 0.06 \mathrm{~cm}^{3}$
Calculate the percentage uncertainty in the volume measured using this pipette.
Use the equation:

$$
\text { percentage uncertainty }=\frac{\text { uncertainty }}{\text { volume measured }} \times 100
$$

\qquad
\qquad
\qquad
Percentage uncertainty $=\ldots$ \%
(h) Give one advantage of using a pipette rather than using a measuring cylinder to measure the volume of hydrochloric acid.
\qquad
\qquad
4. This question is about citric acid $\left(\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{7}\right)$.

Citric acid is a solid.
A student investigated the temperature change during the reaction between citric acid and sodium hydrogencarbonate solution.

This is the method used.

1. Pour $25 \mathrm{~cm}^{3}$ of sodium hydrogencarbonate solution into a polystyrene cup.
2. Measure the temperature of the sodium hydrogencarbonate solution.
3. Add 0.20 g of citric acid to the polystyrene cup.
4. Stir the solution.
5. Measure the temperature of the solution.
6. Repeat steps 3 to 5 until a total of 2.00 g of citric acid has been added.

The student plotted the results on a graph.
The student's graph is shown below.

(a) The graph shows an anomalous point when 0.60 g of citric acid was added. This was caused by the student making an error.

The student correctly:

- measured the mass of the citric acid
- read the thermometer
- plotted the point.

Suggest one reason for the anomalous point.
\qquad
\qquad
(b) Explain the shape of the graph in terms of the energy transfers taking place.

You should use data from the graph above in your answer.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(c) A second student repeated the investigation using a metal container instead of the polystyrene cup. The container and the cup were the same size and shape.

Sketch a line on above graph to show the second student's results until 1.00 g of citric acid had been added. The starting temperature of the solution was the same.

Explain your answer.
\qquad
\qquad
\qquad
\qquad

The student used a solution of citric acid to determine the concentration of a solution of sodium hydroxide by titration.
(d) The student made $250 \mathrm{~cm}^{3}$ of a solution of citric acid of concentration $0.0500 \mathrm{~mol} / \mathrm{dm}^{3}$

Calculate the mass of citric acid $\left(\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{7}\right)$ required.
Relative atomic masses $\left(A_{r}\right): \quad \mathrm{H}=1 \quad \mathrm{C}=12 \quad \mathrm{O}=16$
\qquad
\qquad
\qquad
\qquad
\qquad
Mass $=\ldots g$

This is part of the method the student used for the titration.

1. Measure $25.0 \mathrm{~cm}^{3}$ of the sodium hydroxide solution into a conical flask using a pipette.
2. Add a few drops of indicator to the flask.
3. Fill a burette with citric acid solution.
(e) Describe how the student would complete the titration.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(f) Give two reasons why a burette is used for the citric acid solution.

1 \qquad
\qquad
2 \qquad
\qquad
(g) $13.3 \mathrm{~cm}^{3}$ of $0.0500 \mathrm{~mol} / \mathrm{dm}^{3}$ citric acid solution was needed to neutralise $25.0 \mathrm{~cm}^{3}$ of sodium hydroxide solution.

The equation for the reaction is:

$$
3 \mathrm{NaOH}+\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{7} \rightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{7} \mathrm{Na}_{3}+3 \mathrm{H}_{2} \mathrm{O}
$$

Calculate the concentration of the sodium hydroxide solution in $\mathrm{mol} / \mathrm{dm}^{3}$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

$$
\text { Concentration }=\ldots \mathrm{mol} / \mathrm{dm}^{3}
$$

5. This question is about acids and alkalis.
(a) Which ion do all acids produce in aqueous solution?

Tick (\checkmark) one box.
$\mathrm{H}^{+} \quad \square$
$\mathrm{H}^{-} \quad \square$
$\mathrm{O}^{2-} \quad \square$
OH^{-}

(b) Calcium hydroxide solution reacts with an acid to form calcium chloride.

Complete the word equation for the reaction.
calcium hydroxide + \qquad acid \rightarrow calcium chloride + \qquad

A student investigates the volume of sodium hydroxide solution that reacts with $25.0 \mathrm{~cm}^{3}$ of dilute sulfuric acid.

Figure 1 shows the apparatus the student uses.
Figure 1

Use Figure 1 to answer parts (c) and (d).
(c) Name apparatus A.
\qquad
(d) What is the reading on apparatus \mathbf{A} ?
\qquad cm^{3}
(e) The higher the concentration of a sample of dilute sulfuric acid, the greater the volume of sodium hydroxide needed to neutralise the acid.

The student tested two samples of dilute sulfuric acid, \mathbf{P} and \mathbf{Q}.
Describe how the student could use titrations to find which sample, \mathbf{P} or \mathbf{Q}, is more concentrated.
\qquad

