

GCSE Physics

Density

Mark Scheme

Time available: $\mathbf{3 0}$ minutes Marks available: 22 marks

1. (a) Level 2: The method would lead to the production of a valid outcome. Key steps are identified and logically sequenced.

Level 1: The method would not necessarily lead to a valid outcome. Some relevant steps are identified, but links are not made clear.

No relevant content

Indicative content

- part fill a measuring cylinder with water
- measure initial volume
- place object in water
- measure final volume
- \quad volume of object $=$ final volume - initial volume
- fill a displacement / eureka can with water
- water level with spout
- place object in water
- collect displaced water
- measuring cylinder used to determine volume of displaced water
(b) density $=\frac{48.6}{18.0}$

$$
\text { density }=2.70\left(\mathrm{~g} / \mathrm{cm}^{3}\right)
$$

an answer of $2.70\left(\mathrm{~g} / \mathrm{cm}^{3}\right)$ scores 2 marks
(c) limestone
(d) eye position when using measuring cylinder or
water level in can (at start) not at level of spout
or
not all water displaced by stone is collected in container
(e) volume would be lower / higher
2. Level $\mathbf{3}$ (5-6 marks):

Clear and coherent description of both methods including equation needed to calculate density. Steps are logically ordered and could be followed by someone else to obtain valid results.

Level 2 (3-4 marks):

Clear description of one method to measure density or partial description of both methods. Steps may not be logically ordered.

Level 1 (1-2 marks):

Basic description of measurements needed with no indication of how to use them.

0 marks:

No relevant content.

Indicative content

For both:

- measure mass using a balance
- calculate density using $\rho=\mathrm{m} / \mathrm{V}$

Metal cube:

- measure length of cube's sides using a ruler
- calculate volume

Small statue:

- immerse in water
- measure volume / mass of water displaced
- volume of water displaced = volume of small statue

3.

(a) range of speeds
moving in different directions
accept random motion
(b) internal energy
(c) density = mass / volume
(d) $0.00254 / 0.0141$
0.18
accept 0.18 with no working shown for the 2 calculation marks
$\mathrm{kg} / \mathrm{m}^{3}$

