

GCSE Physics

Density

Question Paper

Time available: 30 minutes Marks available: 22 marks

www.accesstuition.com

A st	udent wanted to determine the density of a small piece of rock.	Access Tuition
(a)	Describe how the student could measure the volume of the piece of rock.	www.accesstuition.com
(b)	The volume of the piece of reak was 19.0 cm ³	(4)
(b)	The volume of the piece of rock was 18.0 cm ³ . The student measured the mass of the piece of rock as 48.6 g.	
	Calculate the density of the rock in g/cm ³ .	
	Use the equation:	
	$density = \frac{mass}{volume}$	

1.

(2)

Density = _____ g/cm³

The graph below shows the densities of different types of rock.

(c) What is the most likely type of rock that the student had?

Tick **one** box.

Basalt	
Flint	
Granite	
Limestone	
Sandstone	

(1)

(d) Give one source of error that may have occurred when the student r the volume of the rock.	measured Access Tuition www.accesstuition.com
(e) How would the error you described in part (d) affect the measured vo	olume of the rock?
	 (1) (Total 9 marks)
A student wants to calculate the density of the two objects shown in the fig	gure below.
Metal cube Small statue	
© Whitehoune/iStock/Thinkstock, © Marc Dietrich/Hemera/Thinkstock Describe the methods that the student should use to calculate the densitie	es of the two objects.
	 (Total 6 marks)

2.

www.accesstuition.com

3.

The figure below shows a balloon filled with helium gas.

What name is given to the total ki	netic energy and potential energy of all the particles of
helium gas in the balloon?	
Tick one box.	
External energy	
Internal energy	
Movement energy	

(d)	The helium in the balloon has a mass of 0.00254 kg.				Access	
	The balloo		www.accesstuition.com			
	Calculate t					
		m ³ / kg	kg / m³	kg m³		
			Density =	Unit		

www.accesstuition.com

(3)

(Total 7 marks)