

Forces

Mark Scheme

Time available: 65 minutes Marks available: 57 marks

1. (a) arrow of equal size pointing vertically upwards judged by eye ignore horizontal arrows if equal and opposite horizontal arrows of unequal length negates this mark
labelled 'upthrust'
ignore buoyancy
ignore 25 kN
(b) weight $=25 \mathrm{kN}$
allow 24 to 25 kN inclusive
$25000=$ mass $\times 9.8$
or
$\mathrm{m}=\frac{25000}{9.8}$
allow their W correctly converted and substituted
$\mathrm{m}=2551 \mathrm{~kg}$
allow correctly calculated value using their converted W allow a value correctly calculated with W in $k N$
$\mathrm{m}=2600 \mathrm{~kg}$
allow a calculated answer correctly rounded to 2 significant figures
an answer of 2600 scores 4 marks
(c) Newton's 3rd law (of motion)
(d) vertical force (50 N) drawn and
horizontal force (150 N) drawn to the same scale
resultant tension force in the correct direction
shown by an arrowhead
value of the tension force in the range $156 \mathrm{~N}-160 \mathrm{~N}$
allow a calculated value of 158
value of direction in the range $18^{\circ}-20^{\circ}$ (from the horizontal)
allow 70° to 72° (from the vertical)
allow a bearing in the range 288 to 290
2. (a) arrow vertically down - same size as lift - labelled weight judge by eye
arrow to the left - same size as drag - labelled thrust judge by eye
two correct arrows without labels gains 1 mark
(b) $34^{2}-\left(0^{2}\right)=2 \times 4.0 \times \mathrm{s}$
$\frac{34 \times 34}{8}=s$
$s=140$ (2 sig figs)
an answer of 140 scores 4 marks
an answer of 144.5 scores 3 marks
(c) tension force drawn to a suitable scale and in correct direction 1
triangle completed showing correct components
scale used to determine both component forces
horizontal component $=1900 \mathrm{~N}$
vertical component $=680 \mathrm{~N}$
allow 1850 to 1925 inclusive
allow 660 to 700 inclusive
3. (a) the forces are equal in size and act in opposite directions
(b) (i) forwards / to the right / in the direction of the 300 N force answers in either order
accelerating
(ii) constant velocity to the right
(iii) resultant force is zero
accept forces are equal / balanced
so boat continues in the same direction at the same speed
(iv) parallelogram or triangle is correctly drawn with resultant

value of resultant in the range $545 \mathrm{~N}-595 \mathrm{~N}$ parallelogram drawn without resultant gains 1 mark If no triangle or parallelogram drawn: drawn resultant line is between the two 300 N forces gains 1 mark drawn resultant line is between and longer than the two 300 N forces gains 2 marks
4. (a) 3 lines drawn
all correct
allow 1 mark for each correct line
www.accesstuition.com if two or more lines are drawn from any diagram then all these lines are incorrect

(b) (i) horizontal arrow to the right
judge by eye
accept an arrow drawn outside the box if it is labelled correctly
(ii) horizontal arrow to the left
judge by eye
accept an arrow drawn outside the box if it is labelled correctly
(iii) equal to
(iv) to measure the forces exerted on the dummy during the impact
5. (a) (i) horizontal arrow pointing to the left
judge by eye
drawn anywhere on the diagram
(ii) $60(\mathrm{~N})$
(at steady speed) resultant force must be zero accept forces must balance/are equal accept no acceleration do not accept constant speed
(b) 1680
allow 1 mark for correct substitution, ie 60×28 provided no subsequent step shown
joule

> accept J
do not accept j
2

1
[6]
6. (a) (i) $50(\mathrm{~N})$ ignore any units
(ii) resultant force
(iii) 4000
accept their (a)(i) $\times 80$ correctly calculated for 2 marks allow 1 mark for correct substitution i.e. 50×80 or their (a)(i) $\times 80$ ignore any units
(b) (i) joule
(ii) heat
7. (a) (i) a single force that has the same effect as all the forces combined accept all the forces added / the sum of the forces / overall force
(ii) constant speed (in a straight line) do not accept stationary or constant velocity
(b) 3
allow 1 mark for correct substitution into transformed equation accept answer 0.003 gains 1 mark answer $=0.75$ gains 1 mark
$\mathrm{m} / \mathrm{s}^{2}$
1
(c) as speed increases air resistance increases accept drag / friction for air resistance

1
reducing the resultant force

