

Forces

Question Paper

Time available: 65 minutes Marks available: 57 marks

1. Figure 1 shows a boat floating on the sea. The boat is stationary.

Figure 1

(a) Figure 2 shows part of the free body diagram for the boat. Complete the free body diagram for the boat.

Figure 2

Scale:
$\longmapsto \quad 1$
$1 \mathrm{~cm}=5 \mathrm{kN}$

(b) Calculate the mass of the boat.

Use the information given in Figure 2.
gravitational field strength $=9.8 \mathrm{~N} / \mathrm{kg}$
Give your answer to two significant figures.
\qquad
\qquad
\qquad
\qquad
Mass = \qquad kg
(c) When the boat propeller pushes water backwards, the boat moves forwards. The force on the water causes an equal and opposite force to act on the boat.

Which law is this an example of?
\qquad
(d) Figure 3 shows the boat towing a small dinghy.

Figure 3

The tension force in the tow rope causes a horizontal force forwards and a vertical force upwards on the dinghy.
horizontal force forwards $=150 \mathrm{~N}$
vertical force upwards $=50 \mathrm{~N}$

Figure 4 shows a grid.
Draw a vector diagram to determine the magnitude of the tension force in the tow rope and the direction of the force this causes on the dinghy.

Figure 4

Magnitude of the tension force in the tow rope $=$ N

Direction of the force on the dinghy caused by the tension force in the tow rope
2. (a) Figure 1 shows an aircraft flying at a constant velocity and at a constant height above the ground.

Figure 1

Complete the free body diagram in Figure 2 to show the other two forces acting on the aircraft.

Figure 2

(b) A small aircraft accelerated down a runway at $4.0 \mathrm{~m} / \mathrm{s}^{2}$

The aircraft started from rest and reached a speed of $34 \mathrm{~m} / \mathrm{s}$ just before take-off.
Calculate the distance the aircraft travelled while accelerating.
Give your answer to 2 significant figures.
\qquad
\qquad
\qquad
\qquad
Distance = \qquad m
(c) Figure 3 shows the small aircraft being used to tow a glider.

Figure 3

The tension force in the cable can be resolved into a horizontal component and a vertical component.

The tension in the cable is 2000 N
The cable makes an angle of 20° with the horizontal.
Draw a vector diagram to determine the magnitude of the two components of the tension force in the cable.

Magnitude of the horizontal component $=$ \qquad N

Magnitude of the vertical component $=$ \qquad N
3. When two objects interact, they exert forces on each other.
(a) Which statement about the forces is correct?

Tick (\checkmark) one box.

	Tick (\checkmark)
The forces are equal in size and act in the same direction.	
The forces are unequal in size and act in the same direction.	
The forces are equal in size and act in opposite directions.	
The forces are unequal in size and act in opposite directions.	

(b) A fisherman pulls a boat towards land.

The forces acting on the boat are shown in Diagram 1.
The fisherman exerts a force of 300 N on the boat.
The sea exerts a resistive force of 250 N on the boat.

Diagram 1

(i) Describe the motion of the boat.
\qquad
\qquad
\qquad
\qquad
(ii) When the boat reaches land, the resistive force increases to 300 N . The fisherman continues to exert a force of 300 N .

Describe the motion of the boat.
www.accesstuition.com

Tick ($\sqrt{ }$) one box.

Accelerating to the right

Constant velocity to the right

Stationary

(iii) Explain your answer to part (b)(ii).
\qquad
\qquad
\qquad
\qquad
(iv) Another fisherman comes to help pull the boat. Each fisherman pulls with a force of 300 N, as shown in Diagram 2.

Diagram 2 is drawn to scale.
Add to Diagram 2 to show the single force that has the same effect as the two 300 N forces.

Determine the value of this resultant force.

Diagram 2

Resultant force $=$ \qquad N
4. (a) The diagrams, \mathbf{A}, \mathbf{B} and \mathbf{C}, show the horizontal forces acting on a moving car.

Draw a line to link each diagram to the description of the car's motion at the moment when the forces act.

Draw only three lines.

(b) The front crumple zone of a car is tested at a road traffic laboratory. This is done by using a remote control device to drive the car into a strong barrier. Electronic sensors are attached to a dummy inside the car.

(i) Draw an arrow in Box 1 to show the direction of the force that the car exerts on the barrier.
(ii) Draw an arrow in Box 2 to show the direction of the force that the barrier exerts on the car.
(iii) Complete the following by drawing a ring around the correct line in the box. The car exerts a force of 5000 N on the barrier. The barrier does not move.

The force exerted by the barrier on the car will be	more than
equal to	
less than	$\quad 5000 \mathrm{~N}$.

(iv) Which one of the following gives the most likely reason for attaching electronic sensors to the dummy?

Put a tick (\checkmark) in the box next to your answer.

To measure the speed of the car just before the impact. \square

To measure the forces exerted on the dummy during the impact. \square

To measure the distance the car travels during the impact.

5. The diagram shows a worker using a constant force of 60 N to push a crate across the floor.

My Revision Notes AQA GCSE Physics for A^{*} - C,
Steve Witney, © Philip Allan UK
(a) The crate moves at a constant speed in a straight line
(i) Draw an arrow on the diagram to show the direction of the friction force acting on the moving crate.
(ii) State the size of the friction force acting on the moving crate.
\qquad
Give the reason for your answer.
\qquad
\qquad
(b) Calculate the work done by the worker to push the crate 28 metres.

Show clearly how you work out your answer and give the unit.
Choose the unit from the list below.
joule newton watt

Work done = \qquad
6. The diagram shows an adult and a child pushing a loaded shopping trolley.

(a) (i) What is the total force on the trolley due to the adult and child?
(ii) Which one of the terms in the box means the same as total force?

Draw a ring around your answer.

| answer force \quad mean force | resultant force |
| :---: | :---: | :---: |

(iii) The trolley is pushed at a constant speed for 80 metres.

Calculate the work done to push the trolley 80 metres.
Show clearly how you work out your answer.
\qquad
\qquad
Work done = \qquad
(b) Complete the following sentences by drawing a ring around the correct word in each of the boxes.
(i) The unit of work done is the $\quad \begin{aligned} & \text { joule } \\ & \text { newton } \\ & \text { watt }\end{aligned}$.
(ii) Most of the work done to push the trolley is transformed into $\begin{aligned} & \text { heat } \\ & \text { light } \\ & \text { sound }\end{aligned}$.
7. (a) The diagram shows an aircraft and the horizontal forces acting on it as it moves along a runway. The resultant force on the aircraft is zero.

(i) What is meant by the term resultant force?
\qquad
\qquad
(ii) Describe the movement of the aircraft when the resultant force is zero.
\qquad
\qquad
(b) The aircraft has a take-off mass of 320000 kg . Each of the 4 engines can produce a maximum force of 240 kN .

Calculate the maximum acceleration of the aircraft.
Show clearly how you work out your answer and give the unit.
\qquad
\qquad
\qquad
Acceleration = \qquad
(c) As the aircraft moves along the runway to take off, its acceleration decreases even though the force from the engines is constant.

Explain why.
\qquad
\qquad
\qquad
\qquad

