

GCSE Physics

Half Life and Uses

Mark Scheme

Time available: 55 minutes Marks available: 50 marks

1. (a) B
reason only scores if B is chosen
americium has an atomic number of 95 allow proton number for atomic number allow B has a different atomic number allow B has an atomic number of 94
(b) 430 (years)
allow an answer between 420 and 440 (years)
(c) 430 (years)
or
their answer to part (b)
allow an answer between 420 and 440 (years)
2. (a) count rate $=\frac{819}{60}$
count rate $=13.65$
1
corrected count rate $=13.35$ (per second)
allow an answer of
background $=0.30 \times 60$
$=18$ (per minute)
corrected count rate
= 819-18
corrected count rate
$=801$ per minute
an answer of 13.35 (per second) scores 3 marks an answer of 13.95 (per second) scores 2 marks an answer of 801 (per second) scores 2 marks
(b) activity $=1250 \times 180$
activity $=225000(\mathrm{~Bq})$
(c) yearly dose $=0.003 \times 365$
which is $\ll 100(\mathrm{mSv})$
or
(well) below the lowest dose with evidence of causing cancer / harm
3. (a) smoke absorbs / stops alpha radiation allow alpha particles for alpha radiation alpha radiation does not reach the detector is insufficient
(b) alpha radiation is not very penetrating allow alpha particles for alpha radiation
or
alpha radiation does not penetrate skin allow alpha radiation does not travel very far (in air)
(c) beta and gamma radiation will penetrate smoke allow beta and gamma radiation will not be stopped by smoke
no change (in the count rate) would be detected allow the change detected (in the count rate) would be too small
(d) (a long half-life means) the count rate is (approximately) constant allow activity of source is (approximately) constant
or
a short half-life means the count rate decreases quickly
until 1.3 half-lives the count rate is above 80 per second allow after 1.3 half-lives the count rate is below 80 per second
or
until 1.3 half-lives the count rate is above the threshold for the smoke alarm to be activated
or
after 1.3 half-lives the smoke alarm will be activated all the time so don't have to replace source or smoke detector is insufficient
(e) Level 2: Relevant points (reasons / causes) are identified, given in detail and logically linked to form a clear account.

Level 1: Relevant points (reasons / causes) are identified, and there are attempts at logically linking. The resulting account is not fully clear.

No relevant content

Indicative content

- short half-life or half-life of a few hours
- (short half-life means) less damage to cells / tissues / organs / body
- low ionising power
- (low ionising power means) less damage to cells / tissues / organs / body
- highly penetrating
- (highly penetrating means) it can be detected outside the body
- emits gamma radiation

4. (a) cannot predict which dice / atom will 'decay' accept answers given in terms of 'roll a 6'
(b) 3.6 to 3.7 (rolls) allow 1 mark for attempt to read graph when number of dice $=50$
(c) 90
(d) uranium
(e) beta
proton number has gone up (as neutron decays to proton and e^{-})
(f) prevents contamination
or
prevents transfer of radioactive material to teacher's hands
which would cause damage / irradiation over a longer time period.
5. (a) (same) number of protons
(b) (i) nuclei split
do not accept atom for nuclei / nucleus
(ii) (nuclear) reactor
(c) beta
any one from:

- atomic / proton number increases (by 1)
accept atomic / proton number changes by 1
- number of neutrons decreases / changes by 1
- mass number does not change
(total) number of protons and neutrons does not change
- a neutron becomes a proton
(d) (average) time taken for number of nuclei to halve
or
(average) time taken for count-rate / activity to halve
(e) (i) 6.2 (days)

Accept 6.2 to 6.3 inclusive
allow 1 mark for correctly calculating number remaining as 20000
or
allow 1 mark for number of
80000 plus correct use of the graph (gives an answer of 0.8 days)
(ii) radiation causes ionisation
allow radiation can be ionising
that may then harm / kill healthy cells
accept specific examples of harm, eg alter DNA / cause cancer
(iii) benefit (of diagnosis / treatment) greater than risk (of radiation) accept may be the only procedure available
6. (a) protons, electrons
both required, either order
electron, nucleus
(b) 2.7 (days) allow 1 mark for showing correct use of the graph
(c) put source into water at one point on bank accept the idea of testing different parts of the river bank at different times
see if radiation is detected in polluted area
accept idea of tracing
or
put source into water at three points on bank (1)
see if radiation is detected downstream of factory or farmland or sewage treatment works (1)

