

Momentum

Question Paper

Time available: 56 minutes Marks available: 51 marks

1. The diagram shows an air-driven toy.

When the electric motor is switched on the fan rotates.
The fan pushes air backwards making the toy move forwards.

(a) (i) The toy has a mass of 0.15 kg and moves forward with a velocity of $0.08 \mathrm{~m} / \mathrm{s}$. How is the momentum of the toy calculated?

Tick (\checkmark) one box.

$$
0.15+0.08=0.230
$$

$0.15 \div 0.08=1.875$

$0.15 \times 0.08=0.012$ \square
(ii) What is the unit of momentum?

Tick (\checkmark) one box.

(iii) Use the correct answer from the box to complete the sentence.

| less than \quad equal to more than |
| :--- | :--- | :--- |

The momentum of the air backwards is \qquad the momentum of the toy forwards.
www.accesstuition.com
(b) The electric motor can rotate the fan at two different speeds.

Explain why the toy moves faster when the fan rotates at the higher of the two speeds.
\qquad
\qquad
\qquad
\qquad
2. A paintball gun is used to fire a small ball of paint, called a paintball, at a target.

The figure below shows someone just about to fire a paintball gun.
The paintball is inside the gun.

(a) What is the momentum of the paintball before the gun is fired?
\qquad
Give a reason for your answer.
\qquad
\qquad
(b) The gun fires the paintball forwards at a velocity of $90 \mathrm{~m} / \mathrm{s}$.

The paintball has a mass of 0.0030 kg .

Calculate the momentum of the paintball just after the gun is fired.
\qquad
\qquad
\qquad

$$
\text { Momentum }=\ldots \mathrm{kg} \mathrm{~m} / \mathrm{s}
$$

(c) The momentum of the gun and paintball is conserved.

Use the correct answer from the box to complete the sentence.

equal to	greater than	less than

The total momentum of the gun and paintball just after the gun is fired will be \qquad the total momentum of the gun and paintball before the gun is fired.
3. The figure below shows a skateboarder jumping forwards off his skateboard.

The skateboard is stationary at the moment the skateboarder jumps.

(a) The skateboard moves backwards as the skateboarder jumps forwards.

Explain, using the idea of momentum, why the skateboard moves backwards.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(b) The mass of the skateboard is 1.8 kg and the mass of the skateboarder is 42 kg .

Calculate the velocity at which the skateboard moves backwards if the skateboarder jumps forwards at a velocity of $0.3 \mathrm{~m} / \mathrm{s}$.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Velocity of skateboard = \qquad m / s
4. (a) In any collision, the total momentum of the colliding objects is usually conserved.
(i) What is meant by the term 'momentum is conserved'?
\qquad
\qquad
(ii) In a collision, momentum is not always conserved.

Why?
\qquad
\qquad
(b) The diagram shows a car and a van, just before and just after the car collided with the van.

(i) Use the information in the diagram to calculate the change in the momentum of the car.

Show clearly how you work out your answer and give the unit.
\qquad
\qquad
\qquad
\qquad
Change in momentum = \qquad
(ii) Use the idea of conservation of momentum to calculate the velocity of the van when it is pushed forward by the collision.

Show clearly how you work out your answer.
\qquad
\qquad
\qquad
Velocity = \qquad m / s forward
5. (a) Complete the following sentence.

The momentum of a moving object has a magnitude, in $\mathrm{kg} \mathrm{m} / \mathrm{s}$, and a \qquad .
(b) A car being driven at $9.0 \mathrm{~m} / \mathrm{s}$ collides with the back of a stationary lorry.

The car slows down and stops in 0.20 seconds. The total mass of the car and driver is 1200 kg .

Calculate the average force exerted by the lorry on the car during the collision.
Show clearly how you work out your answer.
\qquad
\qquad
\qquad
(c) Within 0.04 s of the car hitting the back of the lorry, the car driver's airbag inflates. The airbag deflates when it is hit by the driver's head.

Use the idea of momentum to explain why the airbag reduces the risk of the drive sustaining a serious head injury.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
6. (a) (i) The diagram shows three vehicles travelling along a straight road at $14 \mathrm{~m} / \mathrm{s}$.

Which vehicle has the greatest momentum?

Give the reason for your answer.
\qquad
\qquad
\qquad
(ii) Use the equation in the box to calculate the momentum of the motorbike when it travels at $14 \mathrm{~m} / \mathrm{s}$.

```
momentum = mass }\times\mathrm{ velocity
```

Show clearly how you work out your answer.
\qquad
\qquad
Momentum = \qquad $\mathrm{kg} \mathrm{m} / \mathrm{s}$
(b) The motorbike follows the lorry for a short time, and then accelerates to overtake both the lorry and van.
(i) Complete the following sentence by drawing a ring around the correct line in the box.

When the motorbike starts to overtake, the kinetic energy

of the motorbike \quad| decreases. |
| :--- |
| stays the same. |
| increases. |

(ii) Give a reason for your answer to part (b)(i).
\qquad
\qquad
(iii) The graph shows the velocity of the motorbike up to the time when it starts to accelerate. The motorbike accelerates constantly, going from a speed of $14 \mathrm{~m} / \mathrm{s}$ to a speed of $20 \mathrm{~m} / \mathrm{s}$ in a time of 2 seconds. The motorbike then stays at $20 \mathrm{~m} / \mathrm{s}$.

Complete the graph to show the motion of the motorbike over the next 4 seconds.

7. (a) A car driver sees the traffic in front is not moving and brakes to stop his car.

The stopping distance of a car is the thinking distance plus the braking distance.
(i) What is meant by the 'braking distance'?
\qquad
\qquad
(ii) The braking distance of a car depends on the speed of the car and the braking force. State one other factor that affects braking distance.
\qquad
\qquad
(iii) How does the braking force needed to stop a car in a particular distance depend on the speed of the car?
\qquad
\qquad
(b) Figure 1 shows the distance-time graph for the car in the 10 seconds before the driver applied the brakes.

Figure 1

Use Figure 1 to calculate the maximum speed the car was travelling at.
Show clearly how you work out your answer.
\qquad
\qquad
Maximum speed $=$ \qquad m / s
(c) The car did not stop in time. It collided with the stationary car in front, joining the two cars together.

Figure 2 shows both cars, just before and just after the collision.
Figure 2

(i) The momentum of the two cars was conserved.

What is meant by the statement 'momentum is conserved'?
\qquad
\qquad
(ii) Calculate the velocity of the two joined cars immediately after the collision.
\qquad
\qquad
\qquad
\qquad
\qquad
Velocity = \qquad m/s
(d) Since 1965, all cars manufactured for use in the UK must have seat belts.

It is safer for a car driver to be wearing a seat belt, compared with not wearing a seat belt, if the car is involved in a collision.

Explain why.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

