

GCSE Physics

Permanent and Induced Magnetism
 Mark Scheme

Time available: 55 minutes Marks available: 52 marks

1. (a) the magnets are not touching
but (each) experiences a force
allow but there is a force of attraction between them
(b) place a (plotting) compass near the (north / south) pole of the magnet and mark the direction that the compass points
move the (plotting) compass around the bar magnet (to the other pole) marking at (regular) intervals the direction the compass points
join the points up and add an arrow pointing from the north pole to the south pole
(c) (closing switch S) causes a current in the coil allow switches on the electromagnet
a magnetic field is created
a force of attraction acts on the ball bearing
so the ball bearing accelerates (towards the iron rod)
2. (a) top of each paper clip labelled $\mathrm{N} /$ north
both parts required
and
bottom of each paper clip labelled S / south
(b) so the paper clips have the same weight / mass
which allows the results for different numbers of turns to be compared (fairly) allow fair test allow the control variable (is the weight / mass of a paper clip) allow to obtain valid results ignore accurate results
(c) as the number of turns increases so does the number of paper clips (held) allow positive correlation
in a linear pattern
directly proportional scores 2 marks
allow a correct description of directly proportional for 2 marks
(d) some of the paper clips were already magnetised
(e) discount the result of 18
ignore repeat experiment / measurements
as the three new results are similar (and not close to 18)
and use 15 (the mean of the new results)
allow find the mean of the remaining results (16,14 and 15)
if no other marks have been awarded: calculate the mean (of all four results) (1)
round down to 15 (1) - this mark only scores if the mean of 15.75 has been calculated
(f) keep number of turns constant
allow a specific number of turns
(use the variable resistor to) change the current (several times)
change the p.d. is insufficient
1
(for each current value) count how many paper clips the electromagnet will hold
3. (a) induced
(b) bar 2
(the same end) of bar 1 attracts both ends of bar 2
or
only two magnets can repel so cannot be bar 1 or bar 3
(c) so the results for each magnet can be compared
or
so there is only one independent variable
fair test is insufficient
allow different thickness of paper would affect number of sheets each magnet could hold
accept it is a control variable
(d) because the magnet with the biggest area was not the strongest accept any correct reason that confirms the hypothesis is wrong eg smallest magnet holds more sheets than the largest
4. (a) (i) field pattern shows:
some straight lines in the gap
direction N to S

(so) box will not close
(b) (i) as paper increases (rapid) decrease in force needed
force levels off (after 50 sheets)
(ii) the newtonmeter will show the weight of the top magnet
(iii) (top) magnet and newtonmeter separate before magnets separate accept reverse argument
(because) force between magnets is greater than force between magnet and hook of newtonmeter
(iv) any three from:

- means of reading value of force at instant the magnets are pulled apart
- increase the pulling force gently
or
use a mechanical device to apply the pulling force
- clamp the bottom magnet
- use smaller sheets of paper
- fewer sheets of papers between readings (smaller intervals)
- ensure magnets remain vertical
- ensure ends of magnet completely overlap
- repeat the procedure several times for each number of sheets and take a mean
- make sure all sheets of paper are the same thickness
(v) $3(\mathrm{~mm})$
30×0.1 ecf gains 2 marks
2.1 N corresponds to 30 sheets gains 1 mark
(a) (i) increase
(ii) A and B
and
B and C
both required for the mark
either order
(iii) any two from:
- size of nail
or
nail material
allow (same) nail
- current
allow (same) cell
allow p.d.
same amount of electricity is insufficient
- (size of) paper clip
- length of wire
accept type / thickness of wire
(b) 4

B picks up the same number as C, so this electromagnet would pick up the same number as A
or
direction of current does not affect the strength of the electromagnet allow it has got the same number of turns as A
(c) 2

$$
\text { allow } 1 \text { or } 3
$$

7. (i) relay accept solenoid
do not accept magnetic switch
(ii) a current flows through the coil (of the electromagnet) or a current flows through the electromagnet or a (magnetic) field is produced
accept 'electricity' for 'current'
accept the electromagnet is activated or magnetised or turned on do not accept answer in terms of magnetic charge
the (iron) arm is attracted to the electromagnet accept the arm pivots or moves towards the electromagnet
the contacts are pushed together do not accept contacts attract
