

GCSE Physics

Permanent and Induced Magnetism Question Paper

Time available: 55 minutes Marks available: 52 marks

1. Figure 1 shows two bar magnets suspended close to each other.

Figure 1

(a) Explain what is meant by the following statement.
'A non-contact force acts on each magnet'.
\qquad
\qquad
\qquad
\qquad
(b) Describe how to plot the magnetic field pattern of a bar magnet.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

A student has set up the apparatus shown in Figure 2.
The iron rod is fixed to the track and cannot move.
Figure 2

(c) The student gives the steel ball bearing a gentle push in the direction of the iron rod.

At the same time the student closes the switch \mathbf{S}.
Explain the effect on the motion of the ball bearing when the switch \mathbf{S} is closed.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
2. Figure 1 shows two paper clips hanging from a bar magnet.

Figure 1

The paper clips have become magnetised.
(a) Label the north and south poles of both paper clips.

A student investigated how the number of turns of wire on an electromagnet affects the strength of the electromagnet.

Figure 2 shows the equipment used by the student. Throughout the investigation the student kept the current through the wire constant.

Figure 2

(b) The student measured the strength of the electromagnet by counting the number of paper clips the electromagnet could hold.

Explain why it was important that the paper clips were all the same size.
\qquad
\qquad
\qquad
\qquad

The table below shows the student's results.

Number of turns of wire on the electromagnet	Number of paper clips held
10	3
20	6
30	9
40	12

(c) Describe the pattern shown in the table.
\qquad
\qquad
\qquad
\qquad
(d) The student then used 50 turns of wire on the electromagnet.

The electromagnet picked up 18 paper clips. This was more paper clips than the student had expected.

Which one is the most likely cause of this result?
Tick one box.

The paper clips used with 50 turns were larger than the others. \square

There were less than 50 turns of wire on the electromagnet. \square

Some of the paper clips were already magnetised. \square
(e) The student repeated the measurement for 50 turns of wire three more times.

This gave her the following set of results.
$\begin{array}{llll}18 & 16 & 14 & 15\end{array}$
Explain what the student should now do with the four results for 50 turns of wire.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(f) The student wrote the hypothesis:
'Increasing the current through the wire will make the electromagnet stronger.'
Describe how the student should change the investigation to test this hypothesis.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(Total 12 marks)
3. Figure 1 shows two iron nails hanging from a bar magnet.

The iron nails which were unmagnetised are now magnetised.

Figure 1

(a) Complete the sentence.

Use a word from the box.

forced	induced

The iron nails have become \qquad magnets.
(b) Each of the three metal bars in Figure 2 is either a bar magnet or a piece of unmagnetised iron.

The forces that act between the bars when different ends are placed close together are shown by the arrows.

Figure 2

Which one of the metal bars is a piece of unmagnetised iron?

Tick one box.

Bar 1

Bar 2

Bar 3 \square

Give the reason for your answer.
\qquad
\qquad
(c) A student investigated the strength of different fridge magnets by putting small sheets of paper between each magnet and the fridge door.

The student measured the maximum number of sheets of paper that each magnet was able to hold in place.

Why was it important that each small sheet of paper had the same thickness?
\qquad
\qquad
\qquad
(d) Before starting the investigation the student wrote the following hypothesis:

The bigger the area of a fridge magnet the stronger the magnet will be.,
The student's results are given in the table below.

Fridge magnet	Area of magnet in $\mathbf{m m}^{2}$	Number of sheets of paper held
A	40	20
B	110	16
C	250	6
D	1340	8
E		4

Give one reason why the results from the investigation do not support the student's hypothesis.
\qquad
\qquad
4. (a) Electromagnets are often used at recycling centres to separate some types of metals from other materials.

Give one reason why an electromagnet would be used rather than a permanent magnet.
\qquad
\qquad
(b) In this question you will gain marks for using good English, organising information clearly and using scientific words correctly.

Some students want to build an electromagnet.
The students have the equipment shown below.

Describe how the students could build an electromagnet. Include in your answer how the students should vary and test the strength of their electromagnet.
5. (a) Diagram 1 shows a magnetic closure box when open and shut. It is a box that stays shut, when it is closed, due to the force between two small magnets.

These boxes are often used for jewellery.
Diagram 1

Diagram 2 shows the two magnets. The poles of the magnets are on the longer faces.

Diagram 2

(i) Draw, on Diagram 2, the magnetic field pattern between the two facing poles.
(ii) The magnets in the magnetic closure box must not have two North poles facing each other.

Explain why.
\qquad
\qquad
\qquad
\qquad
(b) A student is investigating how the force of attraction between two bar magnets depends on their separation.

She uses the apparatus shown in Diagram 3.

Diagram 3

She uses the following procedure:

- ensures that the newtonmeter does not have a zero error
- holds one of the magnets
- puts sheets of paper on top of the magnet
- places the other magnet, with the newtonmeter magnetically attached, close to the first magnet
- pulls the magnets apart
- notes the reading on the newtonmeter as the magnets separate
- repeats with different numbers of sheets of paper between the magnets.

The results are shown in the table.

Number of sheets of paper between the magnets	10	20	30	40	50	60	70	80	120
Newtonmeter reading as the magnets separate	3.1	2.6	2.1	1.5	1.1	1.1	1.1	1.1	1.1

(i) Describe the pattern of her results.
\qquad
\qquad
\qquad
(ii) No matter how many sheets of paper the student puts between the magnets, the force shown on the newtonmeter never reaches zero.

Why?
\qquad
\qquad
(iii) The student is unable to experiment with fewer than 10 sheets of paper without glueing the magnet to the newtonmeter.

Suggest why.
\qquad
\qquad
\qquad
\qquad
(iv) Suggest three improvements to the procedure that would allow the student to gain more accurate results.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(v) The thickness of one sheet of paper is 0.1 mm .

What is the separation of the magnets when the force required to separate them is 2.1 N?
\qquad
\qquad
\qquad
Separation of magnets $=$ \qquad mm
6. A student is investigating the strength of electromagnets.

Figure 1 shows three electromagnets.
The student hung a line of paper clips from each electromagnet.
Figure 1

Electromagnet A

No more paper clips can be hung from the bottom of each line of paper clips.
(a) (i) Complete the conclusion that the student should make from this investigation. Increasing the number of turns of wire wrapped around the nail will
\qquad the strength of the electromagnet.
(ii) Which two pairs of electromagnets should be compared to make this conclusion?

Pair 1: Electromagnets \qquad and \qquad
Pair 2: Electromagnets \qquad and \qquad
(iii) Suggest two variables that the student should control in this investigation.

1. \qquad
2. \qquad
(b) The cell in electromagnet \mathbf{A} is swapped around to make the current flow in the opposite direction. This is shown in Figure 2.

Figure 2

What is the maximum number of paper clips that can now be hung in a line from this electromagnet?

Draw a ring around the correct answer.
fewer than $4 \quad 4$ more than 4

Give one reason for your answer.
\qquad
\qquad
\qquad
(c) Electromagnet \mathbf{A} is changed to have only 10 turns of wire wrapped around the nail.

Suggest the maximum number of paper clips that could be hung in a line from the end of this electromagnet.

Maximum number of paper clips = \qquad
7. The diagram shows a switch that is operated by an electromagnet.

(i) What is this type of switch called?
\qquad
(ii) The switch is used in a car starter motor circuit.

Explain how turning the ignition key makes a current flow in the starter motor. The explanation has been started for you.

When the ignition key is turned \qquad
\qquad
\qquad
\qquad
\qquad

