

GCSE Physics

Pressure in Fluid

Question Paper

Time available: 53 minutes Marks available: 47 marks

1. Figure 1 shows four blocks of different materials floating on water.

The four blocks are the same volume.

Figure 1

(a) Which of the blocks has the smallest weight?

Tick one box.
A

B \square
C

D \square

Figure 2 shows a lifebuoy next to a deep swimming pool.
Figure 2

(b) The lifebuoy has a mass of 2.5 kg .
gravitational field strength $=9.8 \mathrm{~N} / \mathrm{kg}$

Calculate the weight of the lifebuoy.
Use the equation:

$$
\text { weight }=\text { mass } \times \text { gravitational field strength }
$$

\qquad
\qquad
\qquad
\qquad
Weight = \qquad N
(c) When thrown into the water the lifebuoy floats. The two forces acting on the lifebuoy are the weight of the lifebuoy downwards and upthrust upwards.

How big is the upthrust on the lifebuoy compared to the weight of the lifebuoy?
Tick one box.

The upthrust is greater than the weight.

The upthrust is less than the weight. \square

The upthrust is the same as the weight.

(d) Write down the equation which links acceleration, mass and resultant force.
\qquad
(e) A rope is used to pull the lifebuoy to the side of the swimming pool.

A resultant force of 4.0 N acts on the lifebuoy.
The mass of the lifebuoy is 2.5 kg .
Calculate the acceleration of the lifebuoy.
\qquad
\qquad
\qquad
\qquad
Acceleration $=$ \qquad $\mathrm{m} / \mathrm{s}^{2}$
2. Figure 1 shows a container filled with water.

The three holes in the side of the container are sealed with rubber stoppers.
Figure 1

(a) The water exerts a force of 27 N on the bottom of the container.

The cross-sectional area of the bottom of the container is $0.009 \mathrm{~m}^{2}$.
Calculate the pressure exerted by the water on the bottom of the container.
www.accesstuition.com

Use the equation:

$$
\text { pressure }=\frac{\text { force }}{\text { area }}
$$

Choose the unit.

$\mathrm{kg} / \mathrm{m}^{3}$	$\mathrm{~N} / \mathrm{m}$	Pa

\qquad
\qquad
\qquad
\qquad
Pressure = \qquad Unit = \qquad

The container is put under running water from a tap and the three rubber stoppers removed.
Figure 2 shows the path taken by the water escaping from the top and bottom holes.
Figure 2

(b) Complete Figure 2 to show the path taken by the water escaping from the centre hole.
(c) What can be concluded from Figure 2 about the pressure in a liquid?
www.accesstuition.com
(d) Figure 3 shows a simple model of a liquid.

When a force pushes down on the marbles, the marbles push the sides and bottom of the container outwards.

Figure 3

What can be concluded from this model about the pressure in a liquid?
\qquad
\qquad
3. The diagram below shows an unusually shaped container.

The container has four vertical tubes of different shape and size.

Water is poured into the container up to the level shown in tube 1.
(a) Complete the diagram above to show the height of the water in tubes 2, 3 and 4 .
(b) The further a swimmer dives below the surface of the sea, the greater the pressure on the swimmer.

Explain why.
\qquad
\qquad
\qquad
\qquad
(c) A person swims from a depth of 0.50 m to a depth of 1.70 m below the surface of the sea. density of the sea water $=1030 \mathrm{~kg} / \mathrm{m}^{3}$ gravitational field strength $=9.8 \mathrm{~N} / \mathrm{kg}$ Calculate the increase in pressure on the swimmer.

Give the unit.
Use an equation from the Physics Equation Sheet.
\qquad
\qquad
\qquad
\qquad
Increase in pressure = \qquad Unit \qquad
4. The figure below is a simplified diagram of a hydraulic brake system.

(a) Which is the correct statement about the pressure at \mathbf{X} and the pressure at \mathbf{Y} ?

Tick (\checkmark) one box.

The pressure at \mathbf{X} is greater than at \mathbf{Y} \square

The pressure at \mathbf{X} is the same as at \mathbf{Y} \square

The pressure at \mathbf{X} is less than at \mathbf{Y}

(b) Piston \mathbf{B} is larger than piston \mathbf{A}.

How will this affect the size of the force on piston \mathbf{B} ?
Use the correct answer from the box to complete the sentence.

smaller than	the same as	larger than

The force on piston \mathbf{B} will be \qquad the force on piston \mathbf{A}.
(c) (i) A force of 24 N acts on piston \mathbf{A}. The cross-sectional area of piston \mathbf{A} is $8 \mathrm{~mm}^{2}$. Calculate the pressure in $\mathrm{N} / \mathrm{mm}^{2}$ at position \mathbf{X}.
\qquad
\qquad
\qquad
\qquad
Pressure $=\ldots \mathrm{N} / \mathrm{mm}^{2}$
(ii) The unit $\mathrm{N} / \mathrm{mm}^{2}$ is not often used to measure pressure. Which unit is usually used to measure pressure?

Tick (\checkmark) one box.

(d) The liquid used in the hydraulic brake system freezes at $-30^{\circ} \mathrm{C}$.

Suggest one effect a temperature below $-30^{\circ} \mathrm{C}$ would have on the brake system.
\qquad
\qquad
5. Musicians sometimes perform on a moving platform.

The figure below shows the parts of the lifting machine used to move the platform up and down.

(a) What name is given to a system that uses liquids to transmit forces?

Draw a ring around the correct answer.
electromagnetic hydraulic ionising
(b) To move the platform upwards, the liquid must cause a force of 1800 N to act on the piston.

The cross-sectional area of the piston is $200 \mathrm{~cm}^{2}$.
Calculate the pressure in the liquid, in $\mathrm{N} / \mathrm{cm}^{2}$, when the platform moves.
\qquad
\qquad
\qquad

$$
\text { Pressure }=\ldots \mathrm{N} / \mathrm{cm}^{2}
$$

(c) A new development is to use oil from plants as the liquid in the machine.

Growing plants and extracting the oil requires less energy than producing the liquid usually used in the machine.

Draw a ring around the correct answer to complete the sentence.

liquid usually used.
(Total 4 marks)
6. Mountain bike riders use brakes to slow down.

© Ljupco Smokovski/Shutterstock
Some mountain bikes use liquid-filled pipes to transmit the force from the rider's hand on the brake lever to the brake pads. These brakes are called hydraulic brakes.

(a) Draw a ring around the correct answer to complete each sentence.
(i) Liquids can be used to transmit the forces in a brake system,
(ii) The pressure in the liquid is transmitted

| | are incompressible.
 can flow.
 because liquids
 take the shape of the container. |
| :--- | :--- | :--- |
| | against force F only.
 downwards only.
 in all directions. |

(b) When the rider's hand pulls on the brake lever, the force \mathbf{F} applied to the liquid by the master piston is 80 N . The cross-sectional area of this piston is $50 \mathrm{~mm}^{2}$.

Calculate the pressure, in $\mathrm{N} / \mathrm{mm}^{2}$, exerted on the liquid by the master piston.
\qquad
\qquad
\qquad
Pressure = \qquad $\mathrm{N} / \mathrm{mm}^{2}$
(c) The unit $\mathrm{N} / \mathrm{mm}^{2}$ is not the usual unit of pressure.

Which unit is usually used when calculating pressure?
Draw a ring around the correct answer.

$$
\begin{array}{lll}
\mathrm{N} & \mathrm{Nm}^{2} & \mathrm{~Pa}
\end{array}
$$

(d) The rider applies a larger force to the brake lever. How would this increase in force affect the pressure in the liquid?
\qquad
7. Figure 1 shows how atmospheric pressure varies with altitude.

Figure 1

(a) Explain why atmospheric pressure decreases with increasing altitude.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(b) When flying, the pressure inside the cabin of an aircraft is kept at 70 kPa .

The aircraft window has an area of $810 \mathrm{~cm}^{2}$.
www.accesstuition.com

Use data from Figure 1 to calculate the resultant force acting on an aircraft window when the aircraft is flying at an altitude of 12 km .

Give your answer to two significant figures
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Resultant force $=\square \mathrm{N}$
(c) Figure 2 shows the cross-section of one type of aircraft window.

Figure 2

Explain why the window has been designed to have this shape.
\qquad
\qquad
\qquad

