

GCSE Physics

Radiation

Mark Scheme

Time available: 60 minutes Marks available: 57 marks

1. (a) most alpha particles pass straight through the atom
which shows that the atom is mostly empty space
very few alpha particles are deflected through a large angle
which shows the atom contains a nucleus where the mass / charge of the atom is concentrated
(b) electron may absorb electromagnetic radiation
full credit may be scored for a description of an electron emitting electromagnetic radiation
(and) move further from the nucleus
to a higher energy level
2. (a) Alpha - two protons and two neutrons

Beta - electron from the nucleus

Gamma - electromagnetic radiation
(b) Gamma

Beta
Alpha
allow 1 mark for 1 or 2 correct
(c) any two from:

- (radioactive) source not pointed at students
- (radioactive) source outside the box for minimum time necessary
- safety glasses or eye protection or do not look at source
- gloves
- (radioactive) source held away from body
- (radioactive) source held with tongs / forceps
(d) half-life $=80 \mathrm{~s}$
counts / s after $200 \mathrm{~s}=71$
(e) very small amount of radiation emitted accept similar / same level as background radiation

3. (a) 2 protons and 2 neutrons
accept $2 p$ and $2 n$
accept (the same as a) helium nucleus
symbol is insufficient
do not accept 2 protons and neutrons
(b) (i) gamma rays
(ii) loses/gains (one or more) electron(s)
(c) any one from:

- wear protective clothing
- work behind lead/concrete/glass shielding
- limit time of exposure
- use remote handling
accept wear mask/gloves
wear goggles is insufficient
wear protective equipment/gear is insufficient
accept wear a film badge
accept handle with (long) tongs
accept maintain a safe distance
accept avoid direct contact

4. (a) (i) (atoms with the) same number of protons allow same atomic number or same proton number
(atoms with) different number of neutrons allow different mass number
(ii) 82
(ii) (a) neutron
(iii) $4.0 \times 10^{-4}(\mathrm{~s})$
or
0.0004
$3.00 \times 10^{8} \times 0.1=12000 / t$
gains 1 mark
(iv) particles need to travel a large distance
equipment would have to be very long
with circular paths long distances can be accommodated in a smaller space
(c) (i) the average time for the number of nuclei to halve
the time for count rate to halve
(ii)

1 mark if top boxes total = 265
and bottom boxes total $=108$
1 mark for 4 and 2 for alpha
(d) (i) 3 plotted points

$$
\pm 1 / 2 \text { small square }
$$

best line through points
(ii) $190-205(\mathrm{pm})$
or correct from student's line
5. (a) neutrons and protons
(b) 0
(+)1
(c) (i) total positive charge $=$ total negative charge
accept protons and electrons have an equal opposite charge
(because) no of protons = no of electrons
1
(ii) neutron proton both required, either order
(iii) 2
number of protons do not accept number of electrons
(b) (i) any one from:

- beta
- gamma
accept correct symbols
accept positron / neutrino / neutron
cosmic rays is insufficient
(ii) electrons
(c) (i) mutate / destroy / kill / damage / change / ionise Harm is insufficient
(ii) much smaller than
(iii) are highly ionising

1
[9]

