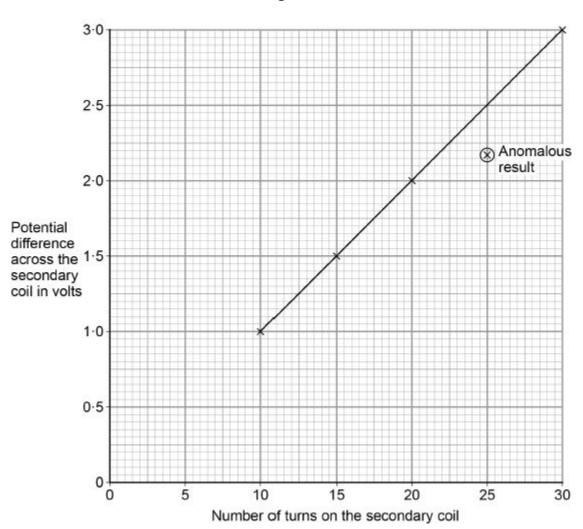


GCSE Physics Transformers and The National Grid Question Paper

Time available: 65 minutes Marks available: 59 marks

www.accesstuition.com

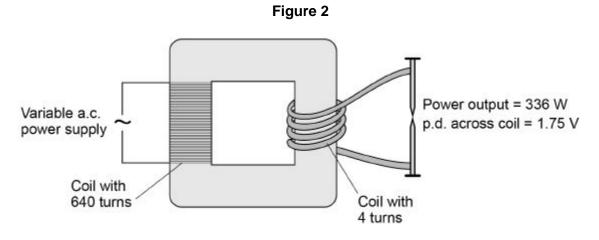

1.

A student used a simple transformer to investigate how the number of turns on the secondary coil affects the potential difference (p.d.) across the secondary coil. The student kept the p.d. across the primary coil fixed at 2V.

Figure 1 shows the results collected by the student.

Figure 1

(a)) Figure 1	l con	taıns	one	anoma	lous	result.
-----	------------	-------	-------	-----	-------	------	---------


Suggest one possible reason why this anomalous result occurred.						

(1)

(b)	The transformer changes from being a step-down to a step-up transformer.	Access
	How can you tell from Figure 1 that this happens?	www.accesstuition.com
		(1)

A spot-welder is a device that uses a transformer to produce a large current to join sheets of metal together.

Figure 2 shows a transformer demonstrating how a large current can heat and join two nails together.

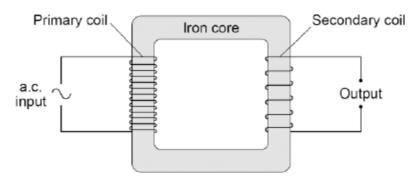
How does the amount of supply is switched on?	infrared radiation emit	ted by the nails cha	nge when the power
supply is switched on?			

(c)

(1)

(d) Calculate the current from the power supply needed to provide a power output of 336 W.

Use the data in Figure 2.


ent.
Current =A

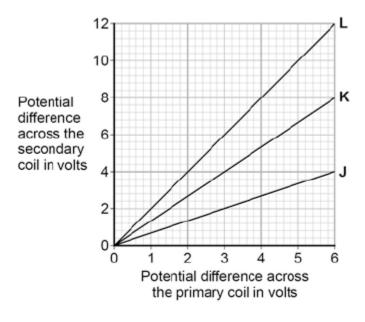
(5) (Total 8 marks)

Figure 1 shows the construction of a simple transformer.

2.

Figure 1

(a) Why is iron a suitable material for the core of a transformer?

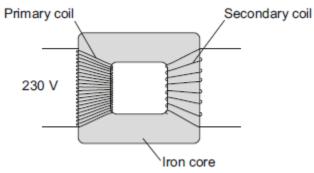

lick one box.	
It is a metal.	
It will not get hot.	
It is easily magnetised.	
It is an electrical conductor.	

(b) A student makes three simple transformers, J, K and L.

Figure 2 shows how the potential difference across the secondary coil of each transformer varies as the potential difference across the primary coil of each transformer is changed.

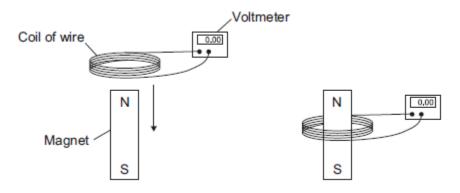
Figure 2

ch of the transformers has 50 turns on the primary coil.	
alculate the number of turns on the secondary coil of transformer L.	
se the correct equation from the Physics Equations Sheet.	
Number of turns on the secondary coil =	


(3)

(Total 5 marks)

Figure 1 shows the structure of a traditional transformer.


Figure 1

There is an alternating current in	
State what is produced in the ird	on core.
A transformer has only one turn	of wire on the secondary coil.
The potential difference across	· · · · · · · · · · · · · · · · · · ·
The potential difference across	· ·
Calculate the number of turns o	n the primary coil.
	Number of turns on the primary coil =
n most transformers, the newer	r output is less than the power input.
ir most transformers, the power	output is less than the power input.
State why.	

(d) Two students investigated how magnets can be used to produce a potential difference. The students held a coil of wire above a magnet. The students quickly lowered the coil so that the magnet was inside the coil, as shown in **Figure 2**.

Figure 2

The students recorded the maximum potential difference for coils with different numbers of turns of wire. The results are shown in the table.

Number of turns of wire in the	Maximum potential difference in volts				
coil	Results from student 1	Results from student 2			
5	0.09	0.08			
10	0.20	0.15			
15	0.31	0.25			
20	0.39	0.33			
25	0.51	0.39			

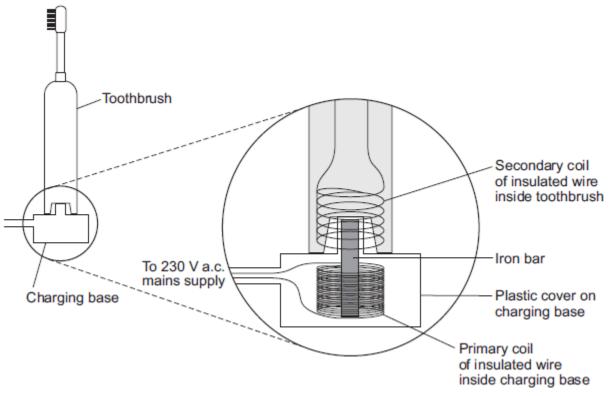
(i) State the resolution of the voltmeter.

Give one reason why	v the resolut	tion of the vo	ltmeter is sui	table fo	r this investigation.

Resolution	
Reason	

(2)

(ii)	The two students used exactly the same equipment to carry out their investigations. Both students recorded their results correctly.	
	Give the reason why student 2 got different results from student 1.	
		(1)
(iii)	The students decided that even though the results were different, there was no nee to repeat the investigation.	
	How do the results show that the investigation is reproducible?	
		(1)
(iv)	State the name of the process which causes the potential difference to be produced in this investigation.	d
		(1)
A tra	ansformer has been developed that can be used with many different devices.	
Sugg	gest one advantage of having a transformer that can be used with many different ces.	
	(Total 1	(1) 1 marks)


(e)

www.accesstuition.com

An electric toothbrush is charged by standing it on a separate charging base. The diagram shows the inside of the electric toothbrush and the charging base.

(a) An alternating potential difference (p.d.) across the coil in the charging base creates an alternating current in the coil inside the toothbrush.

Explain how.			

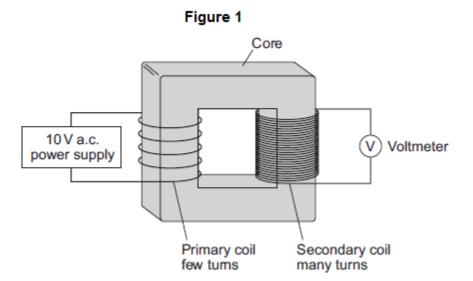
(3)

(D)	is 230 V.
(b)	When the toothbrush is being charged, the p.d. across the primary coil in the charging base

The charging p.d. across the secondary coil in the toothbrush is 7.2 V.

The primary coil in the charging base has 575 turns of wire on its coil.

Calculate the number of turns on the secondary coil inside the toothbrush.

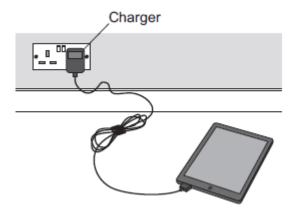


Number of turns on the secondary coil = _____

(2) (Total 5 marks)

Figure 1 shows a traditional transformer.

5.



(a)	(i)	Which metal sh		of the transform	er be made from?	Access Tuition	
		rick (V) One bo	Λ.			www.accesstuition.com	
		aluminium					
		copper					
		iron					
						(1)	
	(ii)	What would the reading be on the voltmeter shown in Figure 1?					
		Draw a ring aro	und the correc	t answer.			
			2 V	10 V	50 V		
		Give the reasor	n for your answ	/er.			

(2)

(b) Figure 2 shows a tablet computer and its charger.

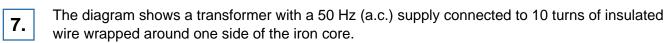
Figure 2

The charger contains a switch mode transformer.

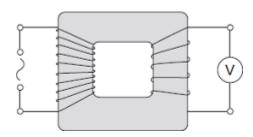
	200	1000	20 000	www.accesstuition.com
	Switch mode transform	·	quencies	<i>(</i> 1)
(ii)	Give one advantage o	of a switch mode tra	nsformer over a tradition	(1) nal transformer.
				(1)

In this question you will be assessed on using good English, organising information clearly and using specialist terms where appropriate.

There are two types of traditional transformer; step-up and step-down.


Describe the similarities and differences between a step-up transformer and a step-down transformer.

You should include details of:


construction, including materials used

•	the effect the transformer has on the input potential difference (p.d.).
You	should not draw a diagram.
Extr	a space

(Total 6 marks)

A voltmeter is connected to 5 turns wrapped around the other side of the iron core.

(a) What type of transformer is shown in the diagram?

Draw a ring around the correct answer.

step-down	step-up	switch mode	
			(1)

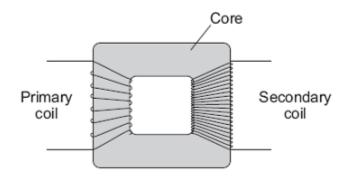
(b) The table shows values for the potential difference (p.d.) of the supply and the voltmeter reading.

p.d. of the supply in volts	Voltmeter reading in volts
6.4	3.2
3.2	
	6.4

(i) Complete the table.

(2)

(ii) Transformers are used as part of the National Grid.


How are the values of p.d. in the table different to the values produced by the National Grid?

(1)

((c)		sformers will work with an alternating current (a.c.) supply but will not work wit ct current (d.c.) supply.	h a
		(i)	Describe the difference between a.c. and d.c.	_ _ _
		(ii)	Explain how a transformer works.	_
				- - -
8.	(a)	In the	e National Grid, very large step-up transformers link power stations to the trans	•
		its se	insformer used for this purpose has 800 turns on its primary coil and 12 800 tu econdary coil. The p.d. (potential difference) across its primary coil is 25 kV. the equation in the box to calculate the p.d. across its secondary coil.	rns on
			p.d. across primary = number of turns on primary	
			p.d. across secondary number of turns on secondary	
		Show	w clearly how you work out your answer.	_
			p.d. across secondary coil = vol	ts (2)

(b) The diagram shows the structure of a transformer.

i)	The primary and secondary coils of a transformer are made of insulated wire.	
	Why is this insulation necessary?	
)	Why is the core made of iron?	(
,		
		(
ii)	Explain how the transformer works.	
		(

(c)	Before 1926, large towns had their own local power stations. After 1926, these power stations were connected to form the National Grid.	er
	Give two advantages of having a National Grid system.	
	1	_
		_
	2	_
		(2)
	(Total 9 marks)