

Waves

Question Paper

Time available: 60 minutes Marks available: 52 marks

1. The diagram below shows a ripple tank that a student used to investigate water waves.

(a) The student adjusted the speed of the motor so that the bar hit the water more times each second.

What happened to the frequency of the waves produced?
Tick one box.

Decreased

Did not change

Increased

(b) Describe how the frequency of the water waves in the ripple tank can be measured.
\qquad
\qquad
\qquad
\qquad
(c) The student measured the frequency of the water waves as 5 hertz.

Calculate the period of the water waves.

Use the equation:

$$
\text { period }=\frac{1}{\text { frequency }}
$$

Choose the unit.

metres	metres / second	seconds

\qquad
\qquad
\qquad
\qquad
Period $=$ \qquad Unit = \qquad
2. P-waves and S-waves are two types of seismic wave caused by earthquakes.
(a) Which one of the statements about P-waves and S-waves is correct?

Tick one box.

P-waves and S-waves are transverse. \square

P-waves and S-waves are longitudinal. \square

P-waves are transverse and S-waves are longitudinal. \square

P-waves are longitudinal and S-waves are transverse. \square

Seismometers on the Earth's surface record the vibrations caused by seismic waves. The diagram below shows the vibration recorded by a seismometer for one P-wave.

(b) Calculate the frequency of the P -wave shown in the diagram above.
\qquad
\qquad
Frequency = \qquad Hz
(c) Write down the equation which links frequency, wavelength and wave speed.
\qquad
(d) The P -wave shown in the diagram above is travelling at $7200 \mathrm{~m} / \mathrm{s}$.

Calculate the wavelength of the P -wave.
\qquad
\qquad
\qquad
\qquad
Wavelength = \qquad m
(e) Explain why the study of seismic waves provides evidence for the structure of the Earth's core.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
3. (a) Figure 1 shows what happens to rays of light incident on three different surfaces.

Figure 1

A

B

C

Which one of the diagrams shows diffuse reflection?
Tick one box.
A

B

C \square
(b) Figure 2 shows what happens to the energy transferred by a ray of light when the ray of light hits a glass block.

Figure 2

Calculate the percentage of the energy absorbed by the glass block.
\qquad
\qquad
Percentage of energy absorbed $=$ \qquad \%
(c) Viewing an object through a colour filter may make the object look a different colour.

Complete the sentences.
Choose the answers from the box.

absorbs	black	blue
red	reflects	transmits

A red object viewed through a blue filter will look \qquad .

This is because the red object only \qquad red light and the blue filter only \qquad blue light.
(d) A white surface is viewed through a green filter.

What colour will the surface look?
\qquad

Cyclists often wear clothing that reflects a lot of light.
Figure 3 shows a student investigating which colours are best at reflecting light.

Figure 3

This is the method used.

1. Small squares of different coloured material were stuck onto a piece of black paper at one end of a darkened laboratory.
2. The student switched on a torch and walked slowly towards the coloured squares.
3. The student stopped walking as soon as he could clearly see a coloured square.
4. The student measured the distance between the torch and the coloured square.
(e) Give a reason why it was important the student did the investigation in a darkened laboratory.
\qquad
\qquad
(f) Give a reason why it was important the area of each coloured square was the same.
\qquad
\qquad

The table shows the student's results.

Colour of square	Distance from the torch to the square in metres
Blue	2.3
Brown	2.1
Green	3.2
Orange	3.4
Red	2.6

Figure 4 shows a bar chart with only three of the student's results.
Figure 4

(g) Complete the bar chart to show all of the results.
(h) Which colour clothing would be best for a cyclist to wear?

Use the data from the table.

Tick one box.
Blue \square

Orange \square
Red \square

Give a reason for your answer.
\qquad
\qquad
\qquad
(i) The student did the investigation again to obtain a second set of results.

The second set of results showed the same pattern as the first set.
Complete the sentence.
Choose the answer from the box.

accurate	precise	repeatable	reproducible

The measurements taken by the student were \qquad .
(Total 14 marks)
4. Figure 1 shows a longitudinal wave being produced in a stretched spring.

Figure 1

(a) Which of the letters on Figure $\mathbf{1}$ shows the centre of a rarefaction?

Tick one box.
J \square
K

L

M \square
(b) Which two letters in Figure 1 have a distance of one wavelength between them? Tick one box.

\mathbf{K} and \mathbf{L}

\mathbf{L} and \mathbf{M} \square \mathbf{J} and \mathbf{M} \square
(c) Describe how the end of the stretched spring should be moved in order to produce a transverse wave.
\qquad
\qquad

Figure 2 shows how two students used the sound reflected off a building (an echo) to measure the speed of sound.

Figure 2

This is the method used.

1. Student \mathbf{A} hit two cymbals together and student \mathbf{B} started a stopwatch.
2. When student \mathbf{A} heard an echo she hit the cymbals together again.
3. Student B stopped the stopwatch after timing 5 echoes.

The table shows the student's results.

Time for 5 echoes in seconds
3.1
2.7
2.2
3.2

(d) The students decided that the time of 2.2 s was an anomalous result.

What was the most likely cause for this anomalous result?
Tick one box.

Not resetting the stopwatch to zero. \square

Starting the stopwatch too soon. \square

Timing less than five echoes.

Timing more than five echoes. \square
(e) Calculate the mean value of the time for 5 echoes.

Ignore the anomalous result.
\qquad
\qquad
\qquad s
(f) The distance between student A and the building is 75 metres.

Calculate the distance the sound travels in going from student A to the building and back again five times.
\qquad
\qquad
distance $=$ \qquad m
(g) Calculate the speed of sound.

Use your answers to Questions (e) and (f) and the equation:

$$
\text { speed }=\frac{\text { distance travelled }}{\text { time }}
$$

\qquad
\qquad
\qquad
\qquad

$$
\text { speed of sound }=\ldots \mathrm{m} / \mathrm{s}
$$

(h) The value for the speed of sound obtained by the students is not very accurate.

Suggest two changes to the method used by the students that would improve the accuracy.

1. \qquad
\qquad
2. \qquad
3. Small water waves are created in a ripple tank by a wooden bar. The wooden bar vibrates up and down hitting the surface of the water.

The figure below shows a cross-section of the ripple tank and water.

(a) Which letter shows the amplitude of a water wave?

Tick one box.

J \square

K

L

(b) The speed of the wooden bar is changed so that the bar hits the water fewer times each second.

What happens to the frequency of the waves produced?

Tick one box.

Increases \square

Does not change \square

Decreases

(c) Describe how the wavelength of the water waves in a ripple tank can be measured accurately.
\qquad
\qquad
\qquad
\qquad
\qquad
(d) The speed of a wave is calculated using the following equation.

$$
\text { wave speed }=\text { frequency } \times \text { wavelength }
$$

The water waves in a ripple tank have a wavelength of 1.2 cm and a frequency of 18.5 Hz .
How does the speed of these water waves compare to the typical speed of a person walking?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
6. (a) Diagram 1 shows two waves.

Diagram 1

(i) Name one wave quantity that is the same for the two waves.
\qquad
(ii) Name one wave quantity that is different for the two waves.
\qquad
(iii) The waves in Diagram 1 are transverse.

Which one of the following types of wave is not a transverse wave?

Draw a ring around the correct answer.

gamma rays
 sound
 visible light

(b) Diagram 2 shows water waves in a ripple tank moving towards and passing through a gap in a barrier.

Diagram 2

Every second, 8 waves pass through the gap in the barrier. The waves have a wavelength of 0.015 metres.

Calculate the speed of the water waves and give the unit.
\qquad
\qquad
\qquad
Speed = \qquad

