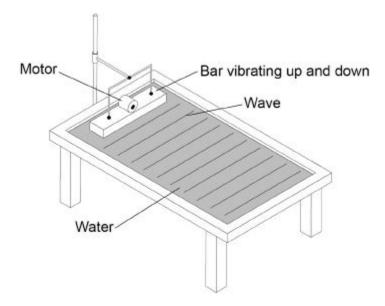


GCSE Physics

Waves

Question Paper


Time available: 60 minutes Marks available: 52 marks

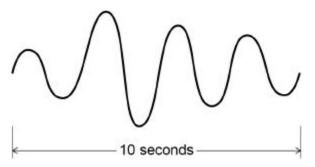
www.accesstuition.com

(a)

The diagram below shows a ripple tank that a student used to investigate water waves.

The student adjusted the speed of the motor so that the bar hit the water more times each

second.		
What happened to	the frequency of the waves produced?	
Tick one box.		
Decreased		
Did not change		
Increased		
		(1)
b) Describe how the f	requency of the water waves in the ripple tank can be measured.	


(2)

(c)	The student measured the frequency of the water waves as 5 hertz.	Access
	Calculate the period of the water waves.	www.accesstuition.com
	Use the equation:	
	$period = \frac{1}{frequency}$	
	Choose the unit.	
	metres metres / second seconds	
	Period = Unit =	
		(3) (Total 6 marks)
P-wa	aves and S-waves are two types of seismic wave caused by earthquakes.	(101010110)
(a)	Which one of the statements about P-waves and S-waves is correct?	
	Tick one box.	
	P-waves and S-waves are transverse.	
	P-waves and S-waves are longitudinal.	
	P-waves are transverse and S-waves are longitudinal.	
	P-waves are longitudinal and S-waves are transverse.	

Seismometers on the Earth's surface record the vibrations caused by seismic waves.

The diagram below shows the vibration recorded by a seismometer for one P-wave.

	Frequency =	Hz
rite down the equation which	links frequency, wavelength and wave speed.	
he P-wave shown in the diagr	am above is travelling at 7200 m/s.	
alculate the wavelength of the	e P-wave.	

Wavelength = _____ m

www.accesstuition.com

(3)

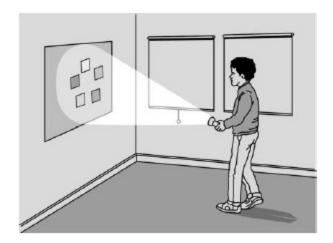

				
				/Tatal 9 m
Figure 1 sho				(Total 8 n
Fluile I Sho	we what hann	and to rave at light incident i	an throa dittoront cuirtac	200
9 3 . 5/10	ws what happe	ens to rays of light incident of	on three different surfac	ces.
- 3 - 5 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6	ws what happe	Figure 1	on three different surfac	ces.
	ws what happe		on three different surface	ces.
	A	Figure 1	- X - N	ces.
	A f the diagrams	Figure 1	- X - N	ces.

Figure 2 shows what happens to the energy transferred by a ray of light when the ray of (b) light hits a glass block. Figure 2 100% Calculate the percentage of the energy absorbed by the glass block. Percentage of energy absorbed = _____ (1) (c) Viewing an object through a colour filter may make the object look a different colour. Complete the sentences. Choose the answers from the box. black blue absorbs red reflects transmits A red object viewed through a blue filter will look ______. This is because the red object only _____ red light and the blue filter only ______ blue light. (3) (d) A white surface is viewed through a green filter. What colour will the surface look? (1) Cyclists often wear clothing that reflects a lot of light.

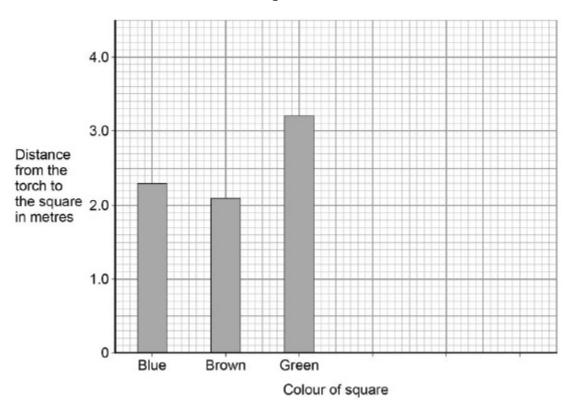
Figure 3 shows a student investigating which colours are best at reflecting light.

Figure 3

This is the method used.

- 1. Small squares of different coloured material were stuck onto a piece of black paper at one end of a darkened laboratory.
- 2. The student switched on a torch and walked slowly towards the coloured squares.
- 3. The student stopped walking as soon as he could clearly see a coloured square.
- 4. The student measured the distance between the torch and the coloured square.
- (e) Give a reason why it was important the student did the investigation in a darkened laboratory.

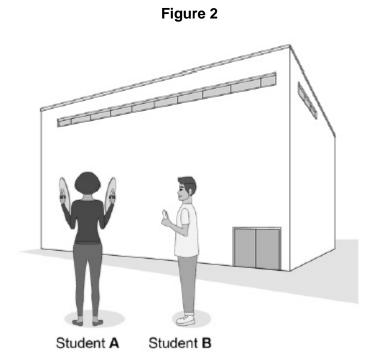
 (f) Give a reason why it was important the area of each coloured square was the same.


The table shows the student's results.

Colour of square	Distance from the torch to the square in metres
Blue	2.3
Brown	2.1
Green	3.2
Orange	3.4
Red	2.6

Figure 4 shows a bar chart with only three of the student's results.

Figure 4


(g) Complete the bar chart to show all of the results.

(3)

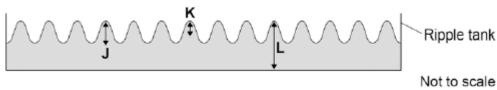
ר)	Which colour clothing would be best for a cyclist to wear?	Access
	Use the data from the table.	www.accesstuition.com
	Tick one box.	
	Blue Brown Green Orange	Red
	Give a reason for your answer.	
)	The student did the investigation again to obtain a second set of results.	(2)
	The second set of results showed the same pattern as the first set.	
	Complete the sentence.	
	Choose the answer from the box.	
	accurate precise repeatable	reproducible
		.,
	The measurements taken by the student were	(1)
		(Total 14 marks)
gι	ure 1 shows a longitudinal wave being produced in a stretched spring.	
	Figure 1	
	J K L M Oscillation	Wall
1)	Which of the letters on Figure 1 shows the centre of a rarefaction?	
	Tick one box.	
	J K L M	

b)	Which two letters in Figure 1 have a distance of one wavelength between them? Tick one box.	S IOT
	J and K K and L L and M J and M	
c)	Describe how the end of the stretched spring should be moved in order to produce a transverse wave.	(1)

Figure 2 shows how two students used the sound reflected off a building (an echo) to measure the speed of sound.

This is the method used.

- 1. Student **A** hit two cymbals together and student **B** started a stopwatch.
- 2. When student **A** heard an echo she hit the cymbals together again.
- 3. Student **B** stopped the stopwatch after timing 5 echoes.


The table shows the student's results.

Time for 5 echoes in seconds
3.1
2.7
2.2
3.2

		mean time = s			
	Ignore the anomalous result.				
(e)	Calculate the mean value of the time fo	or 5 echoes.	(1)		
	Timing more than five echoes.		(4)		
	Timing less than five echoes.				
	Starting the stopwatch too soon.				
	Not resetting the stopwatch to zero.				
	Tick one box.				
	What was the most likely cause for this	anomalous result?			
(d)	d) The students decided that the time of 2.2 s was an anomalous result.				

Calculate the distance the sound travels in going from student A to the building again five times.	and back
distance =	m
Calculate the speed of sound.	
Use your answers to Questions (e) and (f) and the equation:	
$speed = \frac{distance travelled}{time}$	
speed of sound =	 _ m/s
The value for the speed of sound obtained by the students is not very accurate.	
Suggest two changes to the method used by the students that would improve t accuracy.	he
1	
2	
	(Total 10 m
Il water waves are created in a ripple tank by a wooden bar. The wooden bar vib	rates up and

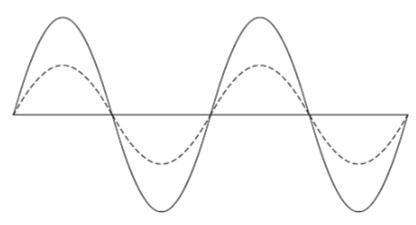
(a)	Which letter shows the amplitude of a water wave?	Acce	SS ition
	Tick one box.	www.access	tuition.com
	J		
	Κ		
	L		
			(1)
(b)	The speed of the wooden bar is changed so that the bar hits the water fewer to second.	imes each	
	What happens to the frequency of the waves produced?		
	Tick one box.		
	Increases		
	Does not change		
	Decreases		
(c)	Describe how the wavelength of the water waves in a ripple tank can be meas accurately.	sured	(1)
			4-1
			(2)

(d) The speed of a wave is calculated using the following equation.

wave speed = frequency x wavelength

The water waves in a ripple tank have a wavelength of 1.2 cm and a frequency of 18.5 Hz.

How does th walking?	e speed of th	ese water v	vaves comp	are to the ty	pical speed	of a person


(4)

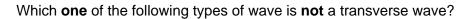
(Total 8 marks)

(a) **Diagram 1** shows two waves.

6.

Diagram 1

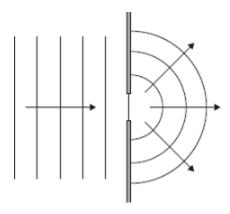
(i) Name **one** wave quantity that is the same for the two waves.



(ii) Name **one** wave quantity that is different for the two waves.

(1)

(iii) The waves in **Diagram 1** are transverse.


Draw a ring around the correct answer.

gamma rays sound visible light

(1)

(b) **Diagram 2** shows water waves in a ripple tank moving towards and passing through a gap in a barrier.

Diagram 2

Every second, 8 waves pass through the gap in the barrier. The waves have a wavelength of 0.015 metres.

Calculate the speed	of the water wave	s and give the	unit.	
	Speed =	=		

(3)

(Total 6 marks)