Question Number	Answer	Acceptable answers	Mark
$\mathbf{1 (a)}$	A differentiate into any type of cell		(1)

Question Number	Answer	Acceptable answers	Mark
1(b)	Any two structures from the list with at least one matched adaptation: Structures (maximum of 2) - biconcave shape (1) - no nucleus (1) - thin membrane (1) - flexible / small (1) - contains haemoglobin (1) (matched) adaptation (maximum of 2) - large surface area / increase oxygen uptake (1) - to increase amount of haemoglobin / oxygen-carrying capacity (1) - so short distance for diffusion (1) - to get through capillaries (1) - to bind oxygen (1)		(3)

Question Number	Answer	Acceptable answers	Mark
1(c)	A description including two of the following points - clotting / to seal a wound / scab formed (1) - stop bleeding (1) - prevent infection / entry of microbes (1) - fibrin (1)		(2)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{2 (a) (i)}$	$0.5 / 0.5$ picogram	Accept: 0.5 picograms accept: the same (mass) as the sperm cell	(1)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{2 (a) (i i) ~}$	C haploid		$\mathbf{(1)}$

Question Number	Answer	Acceptable answers	Mark
$\mathbf{2 (a) (i i i)}$	thymine with adenine, cytosine with guanine		$\mathbf{(1)}$

Question Number	Answer	Acceptable answers	Mark
2(a)(iv)	weak hydrogen bonds / hydrogen bonds / hydrogen (1)	H (bond)	(1)

Question Number	Answer	Acceptable answers	Mark
2(b)(i)	A description including three of the following points: - cell divides / cell division / cell splits(1) - two cells produced (1) - (both) diploid (1) - (both) cells are genetically identical (1)	credit correct reference to stages of mitosis: DNA replication / chromosomes duplicate (1) Chromosomes line up along the equator / middle of the cell (1) chromosomes pulled to either end of cell (1) cytokinesis / cytoplasm splits (1)	(3)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{2 (b) (i i)}$	A description including three of the following points: \bullet ref (to many) cell divisions / eq (1)		
• growth (1) - ref to differentiation / specialisation (1)	accept: gets bigger / larger accept: become specific cells		

Question Number	Answer	Acceptable answers	Mark
$\mathbf{3 (a) (i)}$	Correct substitution i.e. $(-0.5 \div 10.3) \times 100$ (1)	Accept data correctly put into other acceptable methods.	
	$-4.85 /-4.9$	Accept answer with more decimal places eg: - 4.8543 - 4.854368932 Full marks for correct bald answer award max of one mark if negative is not written eg $4.85 /$ 4.9	(2)

Question Number	Answer	Acceptable answers	Mark
3(a)(ii)	better / easier / more valid comparison can be made between values / can make more valid conclusion / because the original / starting masses of potato were not the same / Idea of easier to visualise the size of the change	Ignore makes the results / test reliable / accurate	(1)

Question Number	Answer	Acceptable answers	Mark
3(b)	A description including the following: - Produce two (daughter) cells - which are genetically identical - and diploid	Accept DNA for chromosomes throughout Also credit details of the process of mitosis chromosomes replicates (1) spindle fibres form / chromosomes attached to spindle (1) Chromosomes arranged on equator / middle of cell / chromosomes pulled apart /pulled to poles / separation of sets of chromosomes (1) Idea of nucleus reforming / New cell wall formed (to divide cell) / cytokinesis / description of cytokinesis (1)	(3)

Question Number		Indicative Content	Mark
QWC	*3(c)	A explanation to include some of the following points - active transport requires energy - (active transport moves mineral ions) from the soil - into root (hair cells) - reference to pumps (in the cell membranes) - from a low concentration to a high concentration/against their concentration gradient - reference to mineral ions / mineral salts accept named minerals eg nitrates - diffusion is a passive process - gases diffuse from high to low concentration/down their concentration gradient - gas exchange in the leaf occurs by diffusion - carbon dioxide diffuses in - to air spaces in leaves / into cells - for photosynthesis / produces glucose - oxygen diffuses in - for respiration	(6)
Leve 1	0	No rewardable content	
1	1-2	- a limited explanation that gives information about active OR diffusion in the correct context e.g. minerals ions are transported into root (hair cells) - the answer communicates ideas using simple language and limited scientific terminology - spelling, punctuation and grammar are used with limited	sport ses racy
2	3-4	- a simple explanation that gives details of active transport diffusion transporting materials e.g. carbon dioxide diffus leaves down their concentration gradient OR a limited expla of both active transport and diffusion - the answer communicates ideas showing some evidence o and organisation and uses scientific terminology appropria - spelling, punctuation and grammar are used with some ac	into ation arity acy
3	5-6	- a detailed explanation that describes both processes e.g. transport requires energy to transport mineral ions into th hair cell AND carbon dioxide diffuses into the leaf for photosynthesis - the answer communicates ideas clearly and coherently use range of scientific terminology accurately - spelling, punctuation and grammar are used with few errors	

(Total for question 3 = 12 marks)

