Question Number	Answer	Acceptable answers	Mark
1(a)	A comparison including two of the following: both increase (1) oxygen uptake increases more when running / less when walking (from 6 to 10 km per hr) (1) from 6 to 8 km per hour running has a higher oxygen uptake (1) at 8 km per hour both running and walking have the same oxygen uptake (1) from 8 to 10 km walking has a higher oxygen uptake (1)	accept from 6 to 10 km per hour running increase by 13 ± 1 and walking increase by 22 ± 1 accept quoted figures ± 1 eg at 6 running uses 2 ($\mathrm{cm}^{3} / \mathrm{kg} / \mathrm{min}$) more than walking accept any speed between 6 and 7.9 (km per hr) ignore lines cross at 8 accept quoted figures ± 1 eg at 9 running uses $6\left(\mathrm{~cm}^{3} / \mathrm{kg} / \mathrm{min}\right)$ less than walking accept any speed between 8.1 and 10	(3)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{1 (b) (\mathbf { i) ~ }}$	(oxygen + glucose \rightarrow) water + carbon dioxide	both water and carbon dioxide are required in either order. Accept $\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$	(1)
lgnore: energy			
reject wrong symbols			
eg H 2 O or $\mathrm{H}^{2} \mathrm{O}$			

Question Number	Answer	Acceptable answers	Mark
1(b)(ii)	an explanation linking two of the following: muscles contract more / faster (1) more (aerobic) respiration (1) (so) more energy (is needed from aerobic respiration) (1)	'More' only has to be stated once for MP 2 and 3 more respiration for energy is carried out $=2$ marks. Reject produce / make energy	(2)
Question Number	Answer	Acceptable answers	Mark
1(b)(iii)	B statement 2 only		(1)
Question Number	Answer	Acceptable answers	Mark
1(c)(i)	$\begin{aligned} & 24 \div 0.12(1) \\ & =200 \text { (beats per minute) } \end{aligned}$	two marks for correct bald answer	(2)
Question Number	Answer	Acceptable answers	Mark
1(c)(ii)	more blood per minute / faster blood flow (1) more oxygen / glucose (transported to muscle cells) (1)	'more' only has to be stated once blood flows faster carrying oxygen / glucose $=2$ marks.	(2)

Total for Question 1 = 11 marks

Question Number	Answer	Acceptable answers	Mark
$\mathbf{2 (a) (i)}$	(heart rate $=) 198$ to 200 (1)	2 marks for correct bald answer ecf	(2)
	$(0.18 \times 198$ to $200=)$ 35.6 to $36(1)$		

Question Number	Answer	Acceptable answers	Mark
$\mathbf{2 (a) (i i)}$	B-12.8 $\mathrm{mmol} \mathrm{dm}^{-3}$		(1)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{2 (a) (i i i)}$	D - the concentration of lactic acid is not dependent on heart rate		$\mathbf{(1)}$

Question Number	Answer	Acceptable answers	Mark
2(a)(iv)	Any three from the following: - lactic acid increases / more lactic acid produced (as exercise increases) (1)		
	-using more energy /muscles working / contracting harder / faster (1) - aerobic respiration at its maximum (rate) (1)	Accept stops Ignore breathing as oxygen not supplied fast enough / muscles not getting enough oxygen (1)	Accept body Accept not enough oxygen /oxygenated blood
anaerobic respiration occurs (producing lactic acid) (1)	(3)		

Question Number	Answer	Acceptable answers	Mark
2(b)	Any three from the following: - (concentration of lactic acid) decreases (1) - lactic acid broken down(1) - using oxygen / oxidised(1) - into carbon dioxide and water (1) - ref to oxygen debt / EPOC (1)	Accept amount Accept if written in a word or formula equation for MP3 and MP4	(3)

(Total for question 2 = 10 marks)

Question number	Answer	Mark
3(a)	An explanation that combines identification - understanding (1 mark) and reasoning/justification - understanding (1 mark): (same temperature to act as control (1) (to provide the optimum temperature for enzyme action in the peas (1)	(2)

Question number	Answer				Additional guidance	Mark
3(b)(i)	- headed table with units (1) - accurately completed table (1)				negative values do not need to be shown if table heading states oxygen	
		A	B	C		
	O_{2} used /ml at 10 mins	0.8	0.1	0.0	accept time in row 1 as an alternative	
	O_{2} used /ml at 20 mins	1.6	0.1	0.0		
	O_{2} used /ml at 30 mins	2.4	0.1	0.0		(2)

Question number	Answer	Additional guidance	Mark
$\mathbf{3 (b) (i i)}$	$2.4 \div(30 \times 60)(1)$	accept $1.6 \div(20 \times 60)$ accept $0.8 \div(10 \times 60)$ award full marks for correct numerical answer without working	maximum one mark if no unit conversion

Question number	Answer	Mark
$\mathbf{3 (b) (\text { iii) }}$	An explanation that combines identification - application of knowledge (1 mark) and reasoning/justification - application of understanding (1 mark): the peas in respirometer A are germinating so using up oxygen (1) during the process of respiration to release energy for growth (1)	(2)

Question number	Answer	Additional guidance	Mark
$\mathbf{3 (c)}$	Any one improvement from: soda lime (1) cotton wool soaked with potassium hydroxide (1)	accept other relevant chemical that would remove carbon dioxide	(1)

