| Question
Number | Answer | Acceptable answers | Mark | |--------------------|---|--------------------|------| | 1(a)(i) | electrical (energy) / electricity / direct (electric) current | | (1) | | Question
Number | Answer | Acceptable answers | Mark | |--------------------|--|--|------| | 1(a)(ii) | A description including { light / ignite} gas / lighted splint (1) gas burns / (squeaky) pop (if air is present) (1) | reject glowing splint second mark conditional on first | (2) | | Question
Number | Answer | Acceptable answers | Mark | |--------------------|---|--------------------|------| | 1(b) | sea water / salt / brine / sodium chloride (solution) | | (1) | | Question | Answer | Acceptable answers | Mark | |----------|------------------------------|--------------------|------| | Number | | | | | 1(c)(i) | D salt and water only | | (1) | | Question
Number | Answer | Acceptable answers | Mark | |--------------------|---|--|------| | 1(c)(ii) | A description to include two from | | (2) | | | (green) solid { disappears /
dissolves} (1) | ignore references to names of products | | | | effervesces / bubbles (of colourless gas) given off (1) | fizz | | | | • blue (solution) forms (1) | goes blue ignore incorrect colours of solution | | | | | ignore temperature rise | | | Question | Answer | Acceptable answers | Mark | |----------|--|---------------------------|------| | Number | | | | | 1(d)(i) | An explanation linking tablet C (1) because it neutralises
greatest volume of acid (1) | ignore references to rate | (2) | | Question
Number | Answer | Acceptable answers | Mark | |--------------------|--|--|------| | 1(d)(ii) | {crushed tablets / chewed tablets} have a shorter reaction time (than whole tablets) (1) | ignore crushed because times are quicker / larger surface area / do not need to break down | (1) | | Question
Number | Answer | Acceptable answers | Mark | |--------------------|---|------------------------|------| | 2(a) | magnesium nitrate water carbon dioxide all three correct (2) | allow correct formulae | (2) | | | magnesium nitrate + one other correct (1) | | (2) | | Question
Number | Answer | Acceptable answers | Mark | |--------------------|--------------------|--------------------|------| | Number | | | | | 2 (b)(i) | C – neutralisation | | (1) | | Question | Answer | Acceptable answers | Mark | |------------------|--|--|------| | Number | | | | | 2 (b)(ii) | $ZnO + 2HCI \rightarrow ZnCl_2 + H_2O (3)$ | correct multiples ignore state symbols | | | | LHS (1) RHS (1) balancing of correct formula (1) | | (3) | | Questio | | Indicative Content | Mark | | |---------|-------|---|------------------------------------|--| | Number | | | | | | QWC | *2(c) | A description including some of the following points experiment set up | | | | | | | (6) | | | Level | | No rewardable content | | | | 1 | 1 – 2 | a limited description e.g. simple description/diagram of electrolysis set up OR description of test for one of the gases. the answer communicates ideas using simple language and uses limited scientific terminology spelling, punctuation and grammar are used with limited accuracy | | | | 2 | 3 – 4 | a simple description e.g. a full description of electrolysis of for both gases OR simple description of electrolysis and the one of the gases. the answer communicates ideas showing some evidence of and organisation and uses scientific terminology appropriates spelling, punctuation and grammar are used with some acceptable. | ne test for
of clarity
ately | | | 3 | 5 – 6 | a detailed description e.g. description of electrolysis and t both gases OR a full description of electrolysis and of one The answer communicates ideas clearly and coherently us range of scientific terminology accurately spelling, punctuation and grammar are used with few error | gas test.
ses a | | | Question | Answers | Acceptable Answers | Mark | |----------|---------------------|--------------------|------| | Number | | | | | 3 (a) | A aluminium nitrate | | (1) | | | and lead sulfate | | | | Question
Number | Answers | Acceptable Answers | Mark | |--------------------|---|---|------| | 3 (b) | An explanation linking two of the following | Any reference to molecules/molecular/intermolecular/covalent scores 0 marks overall | | | | strong (forces of / electrostatic) attraction (1) | strong bonds ignore "between atoms" for this mark ignore strong lattice / giant structure | | | | (between) oppositely charged ions (1) | positive and negative <u>ions</u> reject between bonds reject charged atoms for this mark | | | | requires lot of
heat/energy
{ to separate
ions/overcome
forces/break bonds} | {high / more} {heat / energy} ignore hard to melt/high temperature needed | | | | (1) | | (2) | | Question
Number | Answers | Acceptable Answers | Mark | |--------------------|--|--------------------|------| | 3 (c)(i) | <pre>white { precipitate /solid}</pre> | white powder | (1) | | Question | Answers | Acceptable Answers | Mark | |------------------|------------------------------|---|------| | Number | | | | | 3 (c)(ii) | BaSO ₄ + 2KCl (2) | SO ₄ Ba / CIK | | | | | | | | | OR | | | | | | Ignore incorrect use of case, or use of | (2) | | | BaSO ₄ + KCI (1) | superscript or large number 4 | | | Question
Number | Answers | Acceptable Answers | Mark | |--------------------|------------------|--------------------|------| | 3(d)(i) | C K ⁺ | | | | | | | (1) | | Question
Number | Answers | Acceptable Answers | Mark | |--------------------|--|--|------| | 3 (d)(ii) | A description linking three of the following | | | | | (sequence has to be correct for full marks) | | | | | M1 add/mix/react only sodium carbonate (solution) and lead | add/mix/react the (two) solutions/them | | | | nitrate (solution) (1) | for M1 ignore warm/heat mixture | | | | | if any indication of heating to
evaporate anywhere only M1 can
be scored | | | | | if any other reagent added eg acid can score max 2 for question | | | | M2 filter (off precipitate) (1) | decant (off the solution) | | | | M3 dep on M2 | | | | | M3 wash/rinse (solid/residue with distilled water) | reject if wash with acid or other reagent | | | | OR | | | | | dry using {filter paper/paper towel/in a (warm/drying) oven} (1) | leave to dry / in the sun / on a radiator / near a window reject heat/hot oven | | | | | | (3) | | Question
Number | Answer | Acceptable answers | Mark | |--------------------|---------------|--------------------|------| | 4(a) | D aq I | | (1) | | Question | Answer | acceptable answers | Mark | |----------|---|---|------| | Number | | | | | 4(b) | $H^{+} + OH^{-} (1) \rightarrow H_{2}O (1)$ | LHS (1) RHS (1) ignore state symbols, even if incorrect. allow inclusion of spectator ions, | | | | | Na ⁺ and Cl ⁻ , if shown on both sides for one mark max | (2) | | Question | Answer | Acceptable answers | Mark | |----------|--------------------------------------|--|------| | Number | | | | | 4(c)(i) | suitable acid-base indicator | litmus | | | | eg methyl orange,
phenolphthalein | reject universal indicator allow recognisable phonetic | (1) | | | prendprinalen | spelling | (.) | | Question
Number | Answer | Acceptable answers | Mark | |--------------------|--|---------------------|------| | 4(c)(ii) | correct colour change for suitable indicator in 4(c)(i): | | | | | methyl orange :
yellow → orange/pink/red | litmus : blue → red | | | | phenolphthalein :
magenta/pink → colourless | ignore clear | (1) | Link 4ci and 4cii together on e-Pen | Question
Number | Answer | Acceptable answers | Mark | |--------------------|--|---|------| | 4(d) | rel mass NaOH = 23.0 + 16.0 + 1.00 (1) | (= 40.0) (1) | | | | concentration = 20.0 x 1 (1)
formula mass | 0.5 (mol dm ⁻³) without working (2) | (2) | | Question
Number | Answer | Acceptable answers | Mark | |--------------------|---|---|------| | 4(e) | moles of NaOH = 25.0×1.50 (1)
1000
(= 0.0375 moles)
ratio 1 : 1 /
moles NaOH = moles HCI (1) | 0.0375 (1) — without working shown | | | | conc of HCI = 0.0375×1000 (1)
30.0
(= 1.25 (mol dm ⁻³))
OR
$25.0 \times 1.50 = 30.0 \times \text{conc acid (2)}$ | conc of HCI = 1.25 (mol dm ⁻³)(3) without any working shown allow ecf | | | | conc of HCl = $\frac{25.0 \times 1.50}{30.0}$ (1)
(=1.25 (mol dm ⁻³)) | conc = 30.0×1.50 = 1.80 (2)
25.0 (mol dm ⁻³) | | | | | allow 0.00125 /0.125 / 12.5 max 2 | (3) |