Question Number	Answer	Acceptable answers	Mark
$\mathbf{1 (a) (i)}$	electrical (energy) / electricity / direct (electric) current		(1)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{1 (a) (i i)}$	A description including	\{light / ignite gas / lighted splint (1) gas burns / (squeaky) pop (if air is present) (1)	reject glowing splint
second mark conditional on first			

Question Number	Answer	Acceptable answers	Mark
$\mathbf{1 (b)}$	sea water / salt / brine / sodium chloride (solution)		(1)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{1 (c) (i)}$	D salt and water only		$\mathbf{(1)}$

Question Number	Answer	Acceptable answers	Mark
1(c)(ii)	A description to include two from - (green) solid \{disappears / dissolves\} (1) - effervesces / bubbles (of colourless gas) given off (1) - blue (solution) forms (1)	ignore references to names of products fizz goes blue ignore incorrect colours of solution ignore temperature rise	(2)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{1 (d) (\mathbf { i) }}$	An explanation linking		(2)
	• tablet C (1) because it neutralises greatest volume of acid (1)	ignore references to rate	

Question Number	Answer	Acceptable answers	Mark
$\mathbf{1 (d) (i i)}$	-\{crushed tablets / chewed tablets\} have a shorter reaction time (than whole tablets) (1)ignore crushed because times are quicker / larger surface area / do not need to break down	(1)	

Question Number	Answer	Acceptable answers	Mark
2(a)	magnesium nitrate water carbon dioxide	allow correct formulae	
all three correct (2) magnesium nitrate + one other correct (1)	(2)		

Question Number	Answer	Acceptable answers	Mark
$\mathbf{2 (b) (i)}$	C - neutralisation		(1)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{2 (b) (i i)}$	$\mathrm{ZnO}+2 \mathrm{HCl} \rightarrow \mathrm{ZnCl}_{2}+\mathrm{H}_{2} \mathrm{O}$ (3)	correct multiples ignore state symbols	
LHS (1) RHS (1) balancing of correct formula (1)	(3)		

Question Number		Indicative Content	Mark
QWC	* 2(c)	A description including some of the following points experiment set up - hydrochloric acid in container - carbon rods in acid - attach rods to electrical supply - d.c. supply(or reference to positive and negative) - test tubes to collect gases test hydrogen - lighted splint - squeaky pop (with air)/burns test chlorine - (damp blue) litmus paper - (turns red then) bleaches/white	(6)
Level		No rewardable content	
1	1-2	- a limited description e.g. simple description/diagram set up OR description of test for one of the gases. - the answer communicates ideas using simple lang limited scientific terminology - spelling, punctuation and grammar are used with	ctrolysis d uses ccuracy
2	3-4	- a simple description e.g. a full description of elect for both gases OR simple description of electrolysis one of the gases. - the answer communicates ideas showing some evid and organisation and uses scientific terminology app - spelling, punctuation and grammar are used with	R test e test for f clarity tely curacy
3	5-6	- a detailed description e.g. description of electrolysis both gases OR a full description of electrolysis and - The answer communicates ideas clearly and coher range of scientific terminology accurately - spelling, punctuation and grammar are used with	st for gas test. a rs

Question Number	Answers	Acceptable Answers	Mark
$\mathbf{3 ~ (a)}$	A aluminium nitrate and lead sulfate		(1)

Question Number	Answers	Acceptable Answers	Mark
$\mathbf{3 ~ (b)}$	An explanation linking two of the following strong (forces of / electrostatic) attraction (1)	Any reference to molecules/molecular/intermolecular/covalent scores 0 marks overall	strong bonds ignore "between atoms" for this mark ignore strong lattice / giant structure
(between) oppositely charged ions (1)	positive and negative ions reject between bonds reject charged atoms for this mark		
requires lot of heat/energy \{to separate ions/overcome forces/break bonds (1)	ignore hard to melt/ high temperature needed	(2)	

Question Number	Answers	Acceptable Answers	Mark
$\mathbf{3 (c) (i)}$	white $\{$ precipitate /solid \}	white powder	(1)

Question Number	Answers	Acceptable Answers	Mark
$\mathbf{3 (c) (i i)}$	$\mathrm{BaSO}_{4}+2 \mathrm{KCl}(2)$ $\mathrm{SO}_{4} \mathrm{Ba} / \mathrm{ClK}$ OR $\mathrm{BaSO}_{4}+\mathrm{KCl}(1)$	Ignore incorrect use of case, or use of superscript or large number 4	(2)

Question Number	Answers	Acceptable Answers	Mark
$\mathbf{3 (d) (i)}$	C	K^{+}	

Question Number	Answers	Acceptable Answers	Mark
3 (d)(ii)	A description linking three of the following (sequence has to be correct for full marks) M1 add/mix/react only sodium carbonate (solution) and lead nitrate (solution) (1) M2 filter (off precipitate) (1) M3 dep on M2 M3 wash/rinse (solid/residue with distilled water) OR dry using \{filter paper/paper towel/in a (warm/drying) oven\} (1)	add/mix/react the (two) solutions/them for M1 ignore warm/heat mixture if any indication of heating to evaporate anywhere only M1 can be scored if any other reagent added eg acid can score max 2 for question decant (off the solution) reject if wash with acid or other reagent leave to dry / in the sun / on a radiator / near a window reject heat/hot oven	(3)

Question Number	Answer	Acceptable answers	Mark
4(a)	D aq I		(1)

Question Number	Answer	acceptable answers	Mark
4(b)	$\mathrm{H}^{+}+\mathrm{OH}^{-} \quad(1) \rightarrow \mathrm{H}_{2} \mathrm{O}$ (1)	LHS (1) RHS (1) ignore state symbols, even if incorrect. allow inclusion of spectator ions, Na^{+}and Cl, if shown on both sides for one mark max	(2)

Question Number	Answer	Acceptable answers	Mark
4(c)(i)	suitable acid-base indicator eg methyl orange, phenolphthalein	litmus reject universal indicator allow recognisable phonetic spelling	(1)

Question Number	Answer	Acceptable answers	Mark
4(c)(ii)	correct colour change for suitable indicator in 4(c)(i): methyl orange : yellow \rightarrow orange/pink/red phenolphthalein : magenta/pink \rightarrow colourless	ilmus : blue \rightarrow red	

Link 4ci and 4cii together on e-Pen

Question Number	Answer	Acceptable answers	Mark
$\mathbf{4 (d)}$	rel mass $\mathrm{NaOH}=23.0+16.0+$ $1.00(1)$	$(=40.0)(1)$	
	concentration $=$$\underline{20.0} \times 1(1)$ formula mass	$0.5\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$ without working (2)	(2)

Question Number	Answer	Acceptable answers	Mark
4(e)		0.0375 (1) - without working shown conc of $\mathrm{HCl}=1.25\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)(3)$ without any working shown allow ecf $\text { conc }=\frac{30.0 \times 1.50}{25.0}=\frac{1.80(2)}{\left(\mathrm{mol} \mathrm{dm}^{-3}\right)}$ allow 0.00125 /0.125 / 12.5 max 2	(3)

