Question Number	Answer	Acceptable answers	Mark
$\mathbf{1 (a) (i)}$	2.3		$\mathbf{(1)}$

Question Number	Answer	Acceptable answers	Mark
$\mathbf{1 (a) (i i)}$	A		$\mathbf{(1)}$

Question Number	Answer			Acceptable answers	Mark
1(a)(iii)					(2)
	particle	relative mass	relative charge		
	electron		-		
	neutron	1	0 /neutral/no charge		
	proton	1			
	4 correct $=2$ marks 2/3 correct = 1 mark $1 / 0$ correct $=0$ mark				

Question Number		Indicative content	Mark
QWC	* 1(b)	An explanation linking some of the following Structure of boron-11 boron-11 atom has - 5 /same number of protons - 5 / same number of electrons - 6 neutrons / one more neutron than boron 10 Working out RAM relative atomic mass is 10.8 because - weighted mean - more boron-11 than boron-10 - boron-11 atoms are heavier - (therefore) relative atomic mass nearer 11 than 10 OR - in sample given $20 / 100$ of the atoms have a mass of 10 - in sample given $80 / 100$ of the atoms have a mass of 11 - $20 / 100 * 10=2$ - $80 / 100 * 11=8.8$ - $2+8.8=10.8$ NB the diagram in part (a) gives the structure for boron-10 so do not give credit for this (even if claimed to be structure of boron-11 by referring to it as 'it')	(6)
Level	0	No rewardable content	
1	1-	- a limited description e.g. boron-11 has 5 protons and neutrons - the answer communicates ideas using simple language uses limited scientific terminology - spelling, puncuation and grammar are used with limited accuracy	and
2	3-	- a simple explanation e.g. boron-11 has 5 protons, 5 electrons and 6 neutrons and is heavier than boron-10 - the answer communicates ideas showing some eviden clarity and organisation and uses scientific terminology appropriately - spelling, punctuation and grammar are used with som accuracy	
3	5-6	- a detailed explanation e.g. boron-11 has 5 protons, 5 electrons and 6 neutrons, is heavier than boron-10 and is more of boron-11 therefore relative atomic mass ne 11 than 10. - the answer communicates ideas clearly and coherently range of scientific terminology accurately - spelling, puncuation and grammar are used with few	d there arer to uses a

Questio n Number	Answer	Acceptable answers	Mark
1(c)	Answer should include one idea from each list similarities both put - elements into groups / periods (1) - elements with similar properties in same group (1) - metals and non-metals in separately (1) differences Mendeleev's table - was arranged by relative atomic mass(1) - had gaps (1) - had fewer elements (1) - did not include the noble gases (1)	reverse argument for modern periodic table specific examples e.g germanium	(2)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{2 (a) (i)}$	A, B and C	Mg Ca Au (any order) magnesium calcium gold (any order)	(1)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{2 (a) (i i)}$	A and B	Mg Ca (any order) magnesium calcium (any order)	$\mathbf{(1)}$

Question Number	Answer	Acceptable answers	Mark
$\mathbf{2 (b)}$	8 (protons)		$\mathbf{(1)}$

Question Number	Answer	Acceptable answers	Mark
$\mathbf{2 (c) (i)}$	A: 10		$\mathbf{(1)}$

Question Number	Answer	Acceptable answers	Mark
2(c)(ii)	(in 100 atoms) mass of mass number 20 atoms $=20 \times 90$ (1) mass of mass number 22 atoms $=22 \times 10$ (1) relative atomic mass $\begin{aligned} & =\{(22 \times 10)+(20 \times 90)\} / 100 \\ & (=20.2)(1) \end{aligned}$ OR $\begin{aligned} & 20 \text { contributes }=90 / 100 \\ & \times 20(1) \\ & \times 22 \text { contributes }=10 / 100 \\ & \text { relative atomic mass } \\ & 90 / 100 \times 20+10 / 100 \times 22(= \\ & 20.2)(1) \end{aligned}$	20.2 = 3 marks 21.8 = 2 marks (only 1 error made)	(3)

Question Number	Answer	Acceptable answers	Mark		
$\mathbf{2 (d)}$	An explanation linking any two of		(2)		
(the element is) group 0 / noble					
gas /unreactive / inert / does not					
react (1)					
\{(has) 8 electrons / full\}					
outer shell (1)					
prevents filament from reacting					
(1)				\quad	ignore 'not very reactive'
:---					
does not \{gain / lose / share\}					
electrons	\quad				
:---					

Question Number	Answer	Acceptable answers	Mark
3(a)	An explanation including the following points		
	- metal (1) because \{on left of / below \} line dividing metals and non-metals/because boron only non-metal in group 3 (1)	correct statement relating to neighbouring metallic elements	surrounded by metals

Question Number	Answer	Acceptable answers	Mark
$\mathbf{3 (b)}$	2.8 .3	283	(1)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{3 (c) (i)}$	A five protons		$\mathbf{(1)}$

Question Number	Answer	Acceptable answers	Mark
3(c)(ii)	An explanation including the following points - atoms of same element / same \{number of protons / atomic number\} (1) - different \{numbers of neutrons / mass numbers\} (1)	ignore electrons	(2)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{3 (c) (\text { iii) }}$	more atoms have mass 11 (than $10) /$ ORA	boron 11 isotope more abundant OWTE	(1)

