Question Number	Answer	Acceptable answers	Mark
$\mathbf{1 (a) (i)}$	$12+16+16(=44)$	44 with no working	$\mathbf{(1)}$

Question Number	Answer	Acceptable answers	Mark
$\mathbf{1 (a) (i i)}$	$40+12+(3 \times 16) /\left(\mathrm{CaCO}_{3}\right) 100(1)$ gives $40+16 /(\mathrm{CaO}) 56(1)$	(3)	
	25 (tonnes) gives $56 \times \underline{25}$ (tonnes) (1)	allow ecf 14 (tonnes) correct answer no working (3)	

Question Number	Answer	Acceptable answers	Mark
$\mathbf{1 (b (i)}$	theoretical yield is calculated yield/ value calculated from balanced equation/maximum yield possible/maximum amount of product when reactants have fully reacted.	(1)	

Question Number	Answer	Acceptable answers	Mark		
$\mathbf{1 (b) (i i)}$	An explanation linking two of the following \bullet reaction may be incomplete	(2)			
• product/reactant lost					
• other (side-)reactions may					
occur				\quad	impure reactants
:---					

Question Number	Answer	Acceptable answers	Mark		
$\mathbf{1 (c)}$	A suggestion including two of the following - save money/improve profit/disposal of waste costs money (1)	any specific examples	(2)		
- waste product may be					
harmful to the					
environment/cause					
pollution/damage the					
environment (1)				\quad ignore references to landfill \quad	
:---					

Question Number	Answer	Acceptable answers	Mark
$\mathbf{2 (a)}$	to allow air/oxygen in	to ensure magnesium reacts/burns / combusts	(1)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{2 (b) (i) ~}$	all points correctly plotted to half a small square (2) line of best fit (1)	Allow one mark for four or five correctly plotted points ecf their points	(3)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{2 (b) (i i)}$	Any one from	not all magnesium \{burned / reacted\} / some left / incomplete reaction not enough air/oxygen some magnesium oxide / smoke lost	lid not lifted / not enough times lid left off too long (so loses MgO)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{2 (c)}$	$2 \mathrm{Mg}+\mathrm{O}_{2} \rightarrow 2 \mathrm{MgO}$ left hand formulae (1) right hand formula (1) balancing correct formulae (1)	correct multiples	(3)

Question Number	Answer	Acceptable answers	Mark
2(d)	$0.414 / 207$ or $0.064 / 16(1)$ $0.002: 0.004$ or $1: 2(1)$ empirical formula $\mathrm{PbO}_{2}(1)$	if $207 / 0.414$ and $16 / 0.064$ ratio $500: 250$ or $2: 1(1)$ empirical formula $\mathrm{Pb}_{2} \mathrm{O}(1)$	(3)
		allow 3 marks for $0.414 / 207$ or $0.064 / 32$ ratio $1: 1$ empirical formula PbO_{2}	
		allow 2 marks for if 0.414 / 207 and $0.064 / 32$ ratio $1: 1$ empirical formula PbO	

Question Number	Answer	Acceptable answers	Mark
3(a)	Fe Cl $2.8 / 56$ $3.55 / 35.5$ (1) 0.05 0.1 or 1 2 (1) $\mathrm{FeCl}_{2}(1)$	```Cl2Fe FeCl2 with no working (3) Consequential errors: if "upside down" ie 56 / 2.8 and 35.5 / 3.55 ratio 20:10 or 2: 1 (1) empirical formula }\mp@subsup{\textrm{Fe}}{2}{}\textrm{Cl}(1 allow }3\mathrm{ marks for 2.8 / 56 and 3.55 / 71 ratio 0.05: 0.05 or 1: 1 empirical formula }\mp@subsup{\textrm{FeCl}}{2}{ allow 2 marks for 2.8 / 56 and 3.55 / 71 ratio 0.05: 0.05 or 1: 1 empirical formula FeCl allow 2 marks for Fe Cl 2.8/56 3.55/35.5 (1) 0.5 0.1 Fe5Cl (1) - ECF```	(3)

Question Number	Answer	Acceptable answers	Mark
3(b)	EITHER 2×23 (1) g Na makes 2×58.5 (1) g NaCl 9.2 g Na makes $\frac{(2 \times 58.5) \times 9.2 \mathrm{~g} \mathrm{NaCl}}{46}$ $\begin{equation*} (=23.4 \mathrm{~g}) \tag{1} \end{equation*}$ OR 23 g Na makes 58.5 (1) g NaCl 9.2 g Na makes (58.5) x9.2(1) g NaCl 23(1) $(=23.4 \mathrm{~g})$ mark consequentially eg 46 (1) g Na makes ($2 \times 23+35.5$) (0) g NaCl 9.2 g Na makes $\frac{(2 \times 23+35.5) \times 9.2}{46}$ (1) g NaCl $(=16.3 \mathrm{~g})$	23.4 g with no working (3) 23.4 g from any method (3) do not accept 23(.0) mol Na used $=9.2 / 23(1)(=$ 0.4) $\mathrm{mol} \mathrm{NaCl}=0.4$ mass $\mathrm{NaCl}=0.4 \times 58.5(1)$ $(=23.4 \mathrm{~g})$ Ignore units throughout unless incorrect mark consequentially awarding 2 marks for 46.8 $\mathrm{g}, 11.7 \mathrm{~g}$ and 16.3 g (see last example opposite).	(3)

Question Number	Indicative Content	Mark
*3(c)	A description, comparison and explanation including some of the following points Order of reactivity: chlorine $>$ bromine $>$ iodine Experiment - add (aqueous) chlorine to a solution of potassium bromide - the solution turns orange/yellow - bromine is produced Conclusion/Explanation and equation: (so) chlorine is more reactive than / displaces bromine $\mathrm{Cl}_{2}+2 \mathrm{KBr} \rightarrow \mathrm{Br}_{2}+2 \mathrm{KCl} / \mathrm{Cl}_{2}+2 \mathrm{Br}^{-} \rightarrow \mathrm{Br}_{2}+2 \mathrm{Cl}^{-}$ Experiment - add (aqueous) bromine to a solution of potassium iodide - the solution turns brown - iodine is produced Conclusion/Explanation and equation: (so) bromine is more reactive than / displaces iodine $\mathrm{Br}_{2}+2 \mathrm{KI} \rightarrow \mathrm{I}_{2}+2 \mathrm{KBr} / \mathrm{Br}_{2}+2 \mathrm{I}^{-} \rightarrow \mathrm{I}_{2}+2 \mathrm{Br}^{-}$ Experiment - add (aqueous) chlorine to a solution of potassium iodide - the solution turns brown - iodine is produced Conclusion/Explanation and equation: (so) chlorine is more reactive than / displaces iodine $\mathrm{Cl}_{2}+2 \mathrm{KI} \rightarrow \mathrm{I}_{2}+2 \mathrm{KCl} / \mathrm{Cl}_{2}+2 \mathrm{I}^{-} \rightarrow \mathrm{I}_{2}+2 \mathrm{Cl}^{-}$ - Allow use of organic solvents to identify halogens - Allow use of suggested reactions which do not produce a displacement reaction eg add (aqueous) bromine to a solution of a potassium chloride with suitable conclusion/explanation - Allow use of table of suggested experiments	

Level		No rewardable content
1	1-2	- a limited description of at least one experiment in which any halogen solution is added to any halide solution (not of the same halogen) OR describes order of reactivity as $\mathrm{Cl}>\mathrm{Br}>\mathrm{I}$ - the answer communicates ideas using simple language and uses limited scientific terminology - spelling, punctuation and grammar are used with limited accuracy
2	3-4	- a simple description of at least two displacement experiments AND - EITHER at least one correct explanation/conclusion OR - at least one correct observation of a displacement reaction that works/balanced equation. - the answer communicates ideas showing some evidence of clarity and organisation and uses scientific terminology appropriately - spelling, punctuation and grammar are used with some accuracy
3	5-6	- a detailed description of at least two displacement experiments AND - (a total of) at least two correct explanations/conclusions AND - at least one correct observation of a displacement reaction that works/ balanced equation - the answer communicates ideas clearly and coherently uses a range of scientific terminology accurately - spelling, punctuation and grammar are used with few errors

Question Number	Answer	Acceptable answers	Mark
4(a)	A description including:		
• add (dilute) (hydrochloric) acid			
(1)	correct formulae - gas/carbon dioxide (passed into/tested) with limewater (1)	bubbled through limewater	
limewater goes milky / cloudy / white ppt (1)	dependent on use of limewater	(3)	

Question Number	Answer	Acceptable answers	Mark	
4(b)	$40+[2 \times 35.5]$	$(=111)$	111 alone	(1)

Question Number	Answer	Acceptable answers	Mark
4(c)	$100(\mathrm{~kg})$ (calcium carbonate) $(106(\mathrm{~kg})$ (sodium carbonate) (1)	OR alternative $106 \div 100$ $40000 \div 100 / 40 \div 100($ moles approach)	Only 42.4 with no working worth 2 marks 42400 g worth 2 marks

Question Number	Answer	Acceptable answers	Mark
$\mathbf{4 (d) (\mathbf { i })}$	$\bullet 10.4 / 15.0$ (1)		

Question Number	Answer	Acceptable answers	Mark
4(d)(ii)	Two suggestions from - reaction incomplete (1) - impure reactants (1) - other unwanted/side reaction(s) occur (1) - product lost during experiment/practical	reversible ignore by-products form could be an example eg some products left in apparatus ignore generic experimental errors eg measuring/weighing errors/human error/spillage	(2)

