Question Number	Answer	Acceptable answers	Mark
$\mathbf{1 (a) (i)}$	CuCl_{2}		$\mathbf{(1)}$

Question Number	Answer	Acceptable answers	Mark
1(a)(ii)	An explanation linking the following points Either - the amount of product calculated (1) - using the equation (for the reaction) (1) Or - the maximum amount of \{product / copper chloride\} (1) - when all \{reactant / copper \} reacts (1)	using reacting masses amount of product when all \{reactant / copper\} reacts (2)	(2)

Question Number	Answer	Acceptable answers	Mark		
$\mathbf{1 (b) (i)}$	$2 \mathrm{Fe}(\mathrm{s})+3 \mathrm{Br}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{FeBr}_{3}(\mathrm{~s})$				
reactant formulae (1)					
balancing correct formulae					
(1)					
state symbols (1)					
s and g must be lower case				\quad	allow state symbol mark even if
:---					
other marks not awarded	\quad (3) \quad (

Question Number	Answer	Acceptable answers	Mark
$\mathbf{1 (b) (i i)}$	$56+(3 \times 80)(1)$ $=296$	give full marks for correct answer with no working	(1)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{1 (b) (i i i)}$	ratio: $56 / 310(1)$	any number/310 $\times 100(\%)$	
	$\%$ iron $56 / 310 \times 100(\%)(1)$	$18.06 / 18.1$ give full marks for correct answer with no working	(2)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{1 (b) (i v)}$	HO	$\mathrm{OH}, \mathrm{O}_{1} \mathrm{H}_{1}, \mathrm{H}_{1} \mathrm{O}_{1}$	(1)

Question number	Answer	Additional guidance	Mark
2(a)	An answer that combines the following points of understanding to provide a logical description: (hydrogen produced as a gas so) there would be \{effervescence/fizzing/ bubbles\} (1) and (calcium hydroxide produced as a solid so) the water would go \{cloudy/a white precipitate would form\} (1)	Allow: calcium moves (around) (1) calcium decreases in size/disappears/dissolves (1)	

Question number	Answer	Mark
2(b)	$\mathrm{Mg}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{MgO}+\mathrm{H}_{2}$	
	LHS (1)	
	RHS (1)	(2)

Question number	Answer	Additional guidance	Mark
2(c)	An explanation that combines identification - application of knowledge (1 mark) and reasoning/justification - application of understanding (1 mark): - In calcium the outermost electron(s) fare further away from nucleus /experience(s) greater shielding\} (from the nucleus) (as shown by the electronic configuration) (1)	Allow answers in terms of why reactivity of magnesium is less than that of calcium	
	Therefore less attraction between nucleus and electron(s)/ the electron(s) is/are easier to remove (1)		

Question number	Answer	Additional guidance	Mark
2(d)	- divides mass by relative atomic mass (1) - calculates simplest ratio (1) - expresses ratio correctly as empirical formula (1)		(3)

Question number	Answer	Additional guidance	Mark
3(a)(i)	• particles are same size when they should be different sizes (1) model is in 2D but crystal is 3D (1)	Allow reverse statements giving correct information.	

Question number	Answer	Mark
3(a)(ii)	An explanation that combines identification - knowledge (1 mark) and reasoning/justification - understanding (2 marks):	
	- very strong bonds/ionically bonded (1) - between 2+ cations and 2-anions (1) so requires lot of energy to separate magnesium and oxide ions to melt the solid (1)	(3)

Question number	Answer	Additional guidance	Mark
$\mathbf{3 (b) (i)}$	$\mathrm{CaCO}_{3}+2 \mathrm{HCl} \rightarrow \mathrm{CaCl}_{2}+\mathrm{H}_{2} \mathrm{O}$ $+\mathrm{CO}_{2}$ (all formulae on correct side (2) - balancing (1)	Allow 3/4 formulae (1)	(3)

Question number	Answer	Additional guidance	Mark
3(b)(ii)	relative formula mass copper carbonate $=63.5+12.0+(3 \times 16.0)$ $=123.5$ relative formula mass copper oxide $=63.5+16.0$ $=79.5(1)$	Award full marks for correct numerical answer without working.	
	mass copper oxide $=\frac{15.0 \times 79.5}{123.5}=9.7 \mathrm{~g}$ to 2 s.f. (1)		
	Answer must be to two significant figures OR moles of copper carbonate $=\frac{15.0}{123.5}=0.12145$ (1) mass of copper oxide $=$ moles CuCO $\times 79.5$ $=9.7 \mathrm{~g}$ to 2 sf (1)	Answer must be to two significant figures	

Question number	Answer	Additional guidance	Mark		
3(c)	$2.4 / 24$ moles $\mathrm{Mg}=0.1 \mathrm{~mol}(1)$ and 0.2 moles $\mathrm{H}_{2} \mathrm{O}$ has mass $0.2 \times$ formula mass $\mathrm{H}_{2} \mathrm{O}=3.6 \mathrm{~g}$ (1)	Award full marks for correct numerical answer without working.			
total mass reactants $=2.4+3.6=$					
6.0 g is the same as					
total mass products $=5.8+0.2=$					
$6.0 \mathrm{~g}(1)$				\quad	(3)
:---					

Question Number	Answers	Acceptable Answers	Mark
$\mathbf{4 (a) (\mathbf { i })}$	A displacement		$\mathbf{(1)}$

Question Number	Answers	Acceptable Answers	Mark
$\mathbf{4 (a) (i i)}$	orange	Any colour or combination of colours from brown, red, orange and yellow Ignore shade of colours	(1)
Reject other colours combined with these e.g. yellow-green			

Question Number	Answers	Acceptable Answers	Mark
4(b)	C		(1)

Question Number	Answer	Acceptable answers	Mark
4(c)	$\left(\mathrm{H}_{2}+\mathrm{Br}_{2} \rightarrow\right) 2 \mathrm{HBr}$ •correct formula for HBr (1) • balancing of correct formulae (1)	Allow BrH (1)	(2)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{4 (d)}$	$[24+2 \times 35.5]$ (1) (=95)	95 with no working $[24+2 \times 35.5]$ with no answer or an incorrect answer scores (1)	(1)

Question Number	Answers	Acceptable Answers	Mark
4(e)	- relative formula mass $=[23+$ 19] (1) (= 42) - [(19/their relative formula mass) x100] (1) (=45.2(\%)) consequential on their relative formula mass	$\begin{aligned} & (19 / 42) \times 100(2)(=45.2(\%)) \\ & (19 /[19+23]) \times 100(2)(=45.2 \\ & (\%)) \end{aligned}$ 45/45.2 (\%) with no working (2) Ignore additional significant figures Allow 42 seen in working (1) Allow (19/23) x $100=\{82.6 \% /$ 83\% \} (1)	(2)

Question number	Answer	Mark
5(a)	C	(1)

Question number	Answer	Additional guidance	Mark
5(b)	\bullet molecular formula $-\mathrm{C}_{5} \mathrm{H}_{10}$ (1)		
structure (1)			

Question number	Answer	Additional guidance	Mark
$\mathbf{5 (c) (\mathrm { i })}$	calculates relative molecular mass of $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OH}(1)$ calculates mass of $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OH}$ produced (1) final answer $=1.9(\mathrm{~kg})(1)$	Example of calculation Relative molecular mass of $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OH}=(4 \times 12)+$ $(9 \times 1)+16+1=74$	
		Mass of $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OH}$ produced $=(74 \div 56) \times 1.4$	Accept $1.85(\mathrm{~kg})$

Question number	Answer	Mark
5(c)(ii)	A	(1)

Question number	Answer	Mark
5(d)	X and Y are both unsaturated/contain \{multiple/double\} bonds/alkenes (1) - Z is saturated/contains no \{multiple/double\} bonds/alkane (1)	(2)

