1	The structure of a molecule of propene is	
	C = C H	
	(a) Propene is an unsaturated hydrocarbon.	
	(i) Explain what is meant by unsaturated hydrocarbon .	(3)
	(ii) Complete the sentence by putting a cross ($oxtimes$) in the box next to your an	iswer.
	Propene can be made by using heat to decompose large alkane moleculinto smaller, more useful molecules.	les
	This process is known as	(1)
	A combustion	(1)
	☑ B cracking	
	☑ C fractional distillation	
	D polymerisation	
	(iii) Describe what is seen when a sample of propene is shaken with bromine water.	(2)

- (b) Molecules of propene can be combined to form a molecule of poly(propene).
 - (i) Which of these shows part of the structure of a molecule of poly(propene)?Put a cross (⋈) in the box next to your answer.

(1)

(ii) Ropes used on boats are often made from poly(propene).

poly(propene) rope <

State a property of poly(propene) that makes it suitable for use as ropes on boats.

	(1)
(iii) e a problem caused by the disposal of poly(propene) ropes in landfill sites.	
	(1)
(Total for Question 1 = 9 m	
(100a1101Question11=9111	ai koj

2	(a) P	rope	ne is a gaseous hydrocarbon.	
	D	raw	the structure of a molecule of propene, showing all bonds.	(2)
	(b) N	itrog	gen reacts with hydrogen to form ammonia.	
			$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$	
	(i)		alculate the minimum volume of nitrogen, in dm³, required to react empletely with 1000 dm³ of hydrogen.	
		Αl	I volumes are measured at the same temperature and pressure.	
		Pυ	It a cross (⊠) in the box next to your answer.	(4)
	×	Α	333 dm³	(1)
	X	В	1000 dm ³	
	×	C	3000 dm ³	
	×	D	4666 dm ³	
	(ii		ne minimum volumes of nitrogen and hydrogen that must react completely form 5000 dm³ of ammonia are calculated.	
			nese volumes are mixed and left, under appropriate conditions, until the action reaches equilibrium.	
		Ex	plain which gas or gases will be present when equilibrium is reached.	(2)

(iii) The Haber process is carried out under a pressure of about 200 atm.	
Explain the effect on the equilibrium yield of ammonia, if the process is carried out at a pressure higher than 200 atm.	
3	(2)
(iv) Explain the effect on the rate of attainment of equilibrium , if the process is carried out at a pressure higher than 200 atm.	(3)
 (Total for Question 2 = 10 ma	rks)
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	,

One substance present in petrol is octane, C_8H_{18} .					
The structure of a molecule of octane is shown.					
		H H H H H H H			
(i)	Oc	tane is a saturated hydrocarbon.			
	Exp	olain what is meant by saturated hydrocarbon .	(3)		
 	•••••				
(ii)	Oc	tane is mixed with bromine water and shaken.			
	Со	mplete the sentence by putting a cross (\boxtimes) in the box next to your answer.			
	On	shaking, the colour of the mixture	(1)		
X	Α	remains orange	(1)		
X	В	remains colourless			
X	C	changes from clear to orange			
X	D	changes from orange to colourless			

3 (a) Petrol is obtained by the fractional distillation of crude oil.

(b) In the oil industry some fuel oil fraction is converted into petrol.				
	This is done by heating the fuel oil fraction to thermally decompose it and produce smaller molecules.			
	(i) State the name given to this process.	(1)		
	(ii) Give two reasons why it is necessary to carry out this process to make more petrol.	(2)		
reason	1			
reason	2			
	Methane can be burned in excess oxygen to form carbon dioxide and water. Write the balanced equation for this reaction.	(3)		
(Total for Question 3 = 10 marks)				

4	(a) Margarine is made by hydrogenation of a liquid oil.							
	Complete the sentence by putting a cross (\boxtimes) in the box next to your answer.							
	In hydrogenation of a liquid oil (1)							
	\times	Α	hydrogen is removed from the liquid oil					
	×	В	the liquid oil reacts with steam					
	X	C	double bonds are formed					
	\boxtimes	D	the liquid oil is changed into a solid					
	(b) So	aps	are made by boiling oils with concentrated solutions of alkalis.					
	(i)	Wł	nich of the following would be a suitable alkali to use in the production of so	aps?				
		Pu	t a cross (⊠) in the box next to your answer.	(1)				
	A sodium chloride							
	 ■ A sodium chloride ■ B sodium hydroxide ■ C sodium nitrate ■ D sodium sulfate 							
	(ii) The diagram shows a soap anion.							
		Ex	plain how soap anions remove grease marks from clothes during washing					
	with water.							
	(2)							

(c) Esters are made by reacting alcohols with carboxylic acids.	
(i) Give the name of the carboxylic acid that has three carbon atoms in each mo	lecule. (1)
(ii) When ethanoic acid, CH_3COOH , reacts with ethanol, C_2H_5OH , ethyl ethanoate is one of the products formed.	
Write the balanced equation for the reaction.	(2)
(d) Polyesters are used to make plastic bottles.	
State another use of polyesters.	(1)
(Total for Question 4 = 8 m	narks)

 □ A CH₃COOCH₃ □ C CH₃CH₃ □ D CH₃COOH (b) The formula of a molecule of propene is C₃H₀. □ Draw the structure of a molecule of propene, showing all covalent bonds. 	 A CH₃COOCH₃ B CH₃CH₂CI C CH₃CH₃ D CH₃COOH (b) The formula of a molecule of propene is C₃H₆. Draw the structure of a molecule of propene, showing all covalent bonds. 		Vhich	of these is the formula of a molecule of a hydrocarbon?	
 □ A CH₃COOCH₃ □ C CH₃CH₃ □ D CH₃COOH (b) The formula of a molecule of propene is C₃H₀. □ Draw the structure of a molecule of propene, showing all covalent bonds. 	 □ A CH₃COOCH₃ □ C CH₃CH₂ □ D CH₃COOH (b) The formula of a molecule of propene is C₃H₆. □ Draw the structure of a molecule of propene, showing all covalent bonds. 	Pu	ut a	ross (⊠) in the box next to your answer.	
 C CH₃CH₃ D CH₃COOH (b) The formula of a molecule of propene is C₃H₆. Draw the structure of a molecule of propene, showing all covalent bonds. (c) Methane burns in oxygen to form carbon dioxide and water. Write the balanced equation for this reaction. 	 C CH₃COOH (b) The formula of a molecule of propene is C₃H₀. Draw the structure of a molecule of propene, showing all covalent bonds. (c) Methane burns in oxygen to form carbon dioxide and water. Write the balanced equation for this reaction. 	X	Α	CH ₃ COOCH ₃	,
 D CH₃COOH (b) The formula of a molecule of propene is C₃H₆. Draw the structure of a molecule of propene, showing all covalent bonds. (c) Methane burns in oxygen to form carbon dioxide and water. Write the balanced equation for this reaction. 	 D CH₃COOH (b) The formula of a molecule of propene is C₃H₆. Draw the structure of a molecule of propene, showing all covalent bonds. (c) Methane burns in oxygen to form carbon dioxide and water. Write the balanced equation for this reaction. 	\times	В	CH ₃ CH ₂ CI	
 (b) The formula of a molecule of propene is C₃H₆. Draw the structure of a molecule of propene, showing all covalent bonds. (c) Methane burns in oxygen to form carbon dioxide and water. Write the balanced equation for this reaction. 	 (b) The formula of a molecule of propene is C₃H₆. Draw the structure of a molecule of propene, showing all covalent bonds. (c) Methane burns in oxygen to form carbon dioxide and water. Write the balanced equation for this reaction. 	\times	C	CH ₃ CH ₃	
Draw the structure of a molecule of propene, showing all covalent bonds. (c) Methane burns in oxygen to form carbon dioxide and water. Write the balanced equation for this reaction.	Draw the structure of a molecule of propene, showing all covalent bonds. (c) Methane burns in oxygen to form carbon dioxide and water. Write the balanced equation for this reaction.	X	D	CH ₃ COOH	
(c) Methane burns in oxygen to form carbon dioxide and water. Write the balanced equation for this reaction.	(c) Methane burns in oxygen to form carbon dioxide and water. Write the balanced equation for this reaction.	(b) Th	he fo	rmula of a molecule of propene is C_3H_6 .	
(c) Methane burns in oxygen to form carbon dioxide and water. Write the balanced equation for this reaction.	(c) Methane burns in oxygen to form carbon dioxide and water. Write the balanced equation for this reaction.	D)raw [•]	the structure of a molecule of propene, showing all covalent bonds.	
Write the balanced equation for this reaction.	Write the balanced equation for this reaction.				(
Write the balanced equation for this reaction.	Write the balanced equation for this reaction.				
Write the balanced equation for this reaction.	Write the balanced equation for this reaction.				
Write the balanced equation for this reaction.	Write the balanced equation for this reaction.				
Write the balanced equation for this reaction.	Write the balanced equation for this reaction.				
Write the balanced equation for this reaction.	Write the balanced equation for this reaction.				
Write the balanced equation for this reaction.	Write the balanced equation for this reaction.				
Write the balanced equation for this reaction.	Write the balanced equation for this reaction.				
Write the balanced equation for this reaction.	Write the balanced equation for this reaction.				
·	·			ne burns in oxygen to form carbon dioxide and water.	

*(d)	Natural gas is mainly methane. A gas with similar composition, known as bio-methane, can be produced from plants grown specifically for this purpose.	
	Describe the advantages and disadvantages of using bio-methane rather than natural gas as a source of energy.	(5)
		(6)
	(Total for Question 5 = 12 ma	ırks)
	· · ·	-