Question number	Answer	Mark
$\mathbf{1 (a) (i)}$	Pencil is insoluble in the solvent (but chromatography would separate the ink in an ink line).	(1)

Question number	Answer	Mark	
$\mathbf{1 (a) (\text { ii) }}$	Correct position of chromatography paper with start line and ink spot above surface of water.		
			water

Question number	Answer	Additional guidance	Mark
$\mathbf{1 (a) (\text { iii) }}$	•$\mathrm{R}_{\mathrm{f}}=14.5 / 15.3=0.9477$ (1) $=0.95$ (answer to 2 significant figures) (1)	Award full marks for correct numerical answer without working.	(2)

Question number	Answer	Mark
$\mathbf{1 (b) (i)}$	B	(1)

Question number	Answer	Mark
$\mathbf{1 (b) (\text { (ii) }}$	use a different solvent.	(1)

Question number	Answer	Mark
$\mathbf{1 (b) (\text { iii) }}$	An explanation that combines identification via a judgement (1 mark) to reach a conclusion via justification/reasoning (1 mark): l mixture S (1) because it gives the greatest number of spots/gives four spots (1)	(2)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{2 (a) (i)}$	B		(1)

Question Number	Answer	Acceptable answers	Mark
2(b)(i)	- electrons \{shared / between\} atoms (1) - \{2 pairs of/four\} electrons \{shared / between\} two atoms (1) - 4 additional electrons on both oxygen atoms (1)	ignore any inner electrons shown $3^{\text {rd }}$ Mark is dependent on $2^{\text {nd }}$	(3)

Question Number	Answer	Acceptable answers	Mark
2(b)(ii)	An explanation linking the following second marking point is dependent on the first - forces (between the molecules) are weak (1)	(2) intermolecular forces/bonds between molecules reject intramolecular force/covalent bond/ionic bond	therefore little \{heat/energy\} needed to separate molecules/break these forces (1)

Question Number	Answer	Acceptable answers	Mark
2(c)	A description including three from	ignore references to cooling air etc. (fractionating) column (1)	(3)
	- (liquid air) warms/heats/boils		
(1)(gaseous) \{nitrogen/lower boiling point from top of column (1)	(liquid) \{oxygen/higher boiling point\} from bottom of column (1)	can be separated because they have different boiling points (1) alternative to last two marking points	

Question Number	Answers	Acceptable Answers	Mark
$\mathbf{3 ~ (a)}$	A aluminium nitrate and lead sulfate		(1)

Question Number	Answers	Acceptable Answers	Mark
$\mathbf{3 ~ (b)}$	An explanation linking two of the following	Any reference to molecules/molecular/intermolecular/covalent scores 0 marks overall steng (forces of / (1)	strong bonds ignore "between atoms" for this mark ignore strong lattice / giant structure
(between) oppositely charged ions (1)	positive and negative ions reject between bonds reject charged atoms for this mark		
requires lot of heat/energy \{to separate ions/overcome forces/break bonds (1)	\{high / more\} \{heat / energy\} ignore hard to melt/high temperature needed	(2)	

Question Number	Answers	Acceptable Answers	Mark
$\mathbf{3 (c) (i)}$	white $\{$ precipitate /solid\}	white powder	(1)

Question Number	Answers	Acceptable Answers	Mark
$\mathbf{3 (c) (i i)}$	$\mathrm{BaSO}_{4}+2 \mathrm{KCl} \mathrm{(2)}$ OR $\mathrm{SO}_{4} \mathrm{Ba} / \mathrm{CIK}$ $\mathrm{BaSO}_{4}+\mathrm{KCl}(1)$ Ignore incorrect use of case, or use of superscript or large number 4 (2) l		

Question Number	Answers	Acceptable Answers	Mark
3(d)(i)	C	K^{+}	

Question Number	Answers	Acceptable Answers	Mark
$\mathbf{3}$ (d)(ii)	A description linking three of the following (sequence has to be correct for full marks) M1 add/mix/react only sodium carbonate (solution) and lead nitrate (solution) (1)	add/mix/react the (two) solutions/them	for M1 ignore warm/heat mixture if any indication of heating to evaporate anywhere only M1 can be scored if any other reagent added eg acid can score max 2 for question
M2 filter (off precipitate) (1)			
M3 dep on M2			
M3 wash/rinse (solid/residue (off the solution)			
with distilled water)			
OR	reject if wash with acid or other reagent		
dry using \{filter paper/paper towel/in a (warm/drying) oven (1)	leave to dry / in the sun / on a radiator / near a window reject heat/hot oven	(3)	

Question number	Answer			Mark
4(a)				
	salt	soluble	insoluble	
	ammonium chloride	\checkmark		
	lithium sulfate	\checkmark		
	magnesium carbonate		\checkmark	
	All three correct (2) Any two correct (1)			(2)

Question number	Answer	Additional guidance	Mark
4(b)	mass values in correct places (1) multiplication by 100 (1) correct final answer to two significant figures (1)	$\begin{aligned} & \frac{2.53}{2.85} \times 100=88.8 \% \\ & 89 \% \text { (to } 2 \text { s.f.) } \end{aligned}$ Award full marks for correct numerical answer without working.	(3)

Question number	Answer	Mark
4(c)	An explanation that combines identification - improvement of the experimental procedure (maximum 2 marks) and justification/reasoning, which must be linked to the improvement (maximum 2 marks): add excess sodium sulfate solution rather than a few drops (1) so more reaction occurs to form more lead sulfate (1) filter the reaction mixture rather than pour off the liquid(1) so none of the lead sulfate is lost on separation(1) wash the lead sulfate (1) so the impurities are removed (1) place the lead sulfate in an oven/warm place (1) so the lead sulfate is dry (1)	

Question number	Answer	Mark
4(d)	volumes of solution too large for titration method (1) large volumes of liquid need to be heated and then allowed to crystallise (1)	(2)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{5 (a)}$	C : copper sulfate and sodium chloride		(1)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{5 (b)}$	copper sulfate (1) blue-green (1)	allow blue or green or green-blue	(2)
	or sodium chloride (1) yellow (1) colour mark consequential on correct metal (compound)	reject orange and yellow-orange	

Question Number	Answer	Acceptable answers	Mark
5(c)(i)	```An explanation linking weak intermolecular forces /weak forces between molecules (1) little {heat / energy} needed to separate (molecules) (1)```	bonds / attractions in place of forces intermolecular forces between \{atoms / bonds\} loses $1^{\text {st }}$ marking point any answer in terms of covalent or ionic bonding scores zero	(2)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{5 (c) (i i)}$	A description linking	use separating funnel (1)	alternative description of separating funnel eg funnel with a tap at the bottom suitable labelled diagram burette
run off lower \{layer / liquid\} / OWTTE (1)	allow layers / liquids to separate ignore fractional distillation		

Question Number	Answer	Acceptable answers	Mark
$\mathbf{5 (d)}$		Allow a diagram without labels for 2 marks	(2)
	shared pair in molecule (1) rest of molecule consequent on first mark (1)	any symbols shown must be allow any combination of dots and crosses for electrons wrong compound = zero marks	

