| Question
Number | Answer | Acceptable answers | Mark | |--------------------|--|--------------------|------| | 1(a) | tin {more expensive/costs
more} (than
aluminium/steel) ORA (1) | rarer | (2) | | | amount of tin in Earth
smaller (than
aluminium/steel) ORA (1) | Turci | | | Question
Number | Answer | Acceptable answers | Mark | |--------------------|---------------|--------------------|------| | 1(b) | C - reduction | | (1) | | Question
Number | Answer | Acceptable answers | Mark | |--------------------|--------------------------------------|--|------| | 1(c)(i) | an explanation linking the following | | (2) | | | • a mixture of (1) | reject compound ignore combined/joined | | | | • metals (1) | specific examples reject reference to non-metals | | | | | metals melted together (2) | | | Question
Number | Answer | Acceptable answers | Mark | |--------------------|--|--|------| | 1(c)(ii) | in pure metal /aluminium atoms are all same size (1) in pure metal /aluminium {layers/sheets/atoms} | ions or particles for atoms reject molecules once only | (3) | | | {slide/slip/move} (over one another) easily(1) • magnesium atoms larger (1) | different sized particles | | | | disrupt {layers/structure/arrangeme nt} of aluminium atoms (1) | {lock/hold/jam} layers together | | | | prevent
{layers/sheets/atoms}
{slip/slide/move} (1) | | | | Question
Number | Answer | Acceptable answers | Mark | |--------------------|--------|--------------------|------| | 2 (a) | gold | | (1) | | Question | Answer | Acceptable answers | Mark | |--------------|---------------------------|--------------------|------| | Number | | | | | 2 (b) | {loss of / remove} oxygen | gain of electrons | (1) | | Question
Number | Answer | Acceptable answers | Mark | |--------------------|--|---|------| | 2 (c) | An explanation linking | | | | | either | | | | | aluminium high(er) in reactivity / aluminium more reactive than carbon / aluminium compounds are very stable (1) | | | | | or | | | | | iron lower in reactivity / iron less
reactive than carbon / iron
compounds less stable (1) | | | | | plus one of | | | | | (for aluminium) electrolysis is powerful means of reduction / needs powerful means of extraction / needs more energy (1) | stronger means of reduction | | | | (for iron) can be reduced with {carbon / carbon monoxide} / use of carbon is cheaper / use of electricity is expensive / ORA (1) | can be reacted with {carbon / carbon monoxide} and oxygen removed | (2) | | Question
Number | Answer | Acceptable answers | Mark | |--------------------|--|---|------| | 2(d) | An explanation linking the following points • (magnesium and aluminium) { atoms / ions / particles} are different sizes (1) | magnesium atoms are larger than aluminium atoms OR aluminium atoms are larger than magnesium atoms | | | | this prevents the layers (of atoms /
ions / particles) sliding over each
other (1) | sheets / rows penalise molecules only once | (2) | | Question
Number | Answer | Acceptable answers | Mark | |--------------------|---|--------------------|------| | 2 (e) | $4 (AI) + 3 (O_2) \rightarrow (2AI_2O_3)$ | | | | | 4 (1) | | 4-5 | | | 3 (1) | | (2) | | Question number | Answer | Mark | |-----------------|--------|------| | 3(a)(i) | С | (1) | | Question number | Answer | Mark | |-----------------|--------|------| | 3(a)(ii) | С | (1) | | Question number | Answer | Mark | |-----------------|---|------| | 3(b) | Any two of the following points. For the acid, use the same: | | | | • volume (1) | | | | • concentration (1) | (2) | | | temperature (1) | (2) | | Question number | Answer | Mark | |-----------------|------------------|------| | 3(c)(i) | electrolysis (1) | (1) | | Question number | Answer | Mark | |-----------------|--|------| | 3(c)(ii) | An answer that combines identification- knowledge (1 mark) and understanding (1 mark) and reasoning/justification-understanding (1 mark) • aluminium compounds are more stable than iron compounds (1) • so carbon is not a strong enough reducing agent to produce aluminium from its ore (1) | (2) | | Question number | Answer | Mark | |-----------------|--|------| | 3(d) | Fe₂O₃ + 3CO → 2Fe + 3CO₂ Correct formulae (1) Balancing of correct formulae (1) | (2) | | Question
Number | Answer | Acceptable answers | Mark | |--------------------|----------------|--------------------|------| | 4(a) | loss of oxygen | gain of electrons | (1) | | Question | Answer | Acceptable answers | Mark | |----------|--|---|------| | Number | | | | | 4(b) | An explanation to include | | (2) | | | aluminium high in reactivity
series / aluminium more
reactive than {carbon / iron} (1) | aluminium compounds are stable aluminium is more reactive ignore just 'very reactive'/highly reactive | | | | (aluminium reduction) needs
more energy / electrolysis is
{more / very} powerful
(means of reduction) / carbon
cannot displace aluminium
(from aluminium oxide) (1) | allow stronger (method of reduction) | | | Question
Number | Answer | Acceptable answers | Mark | |--------------------|---|--------------------|------| | 4(c) | $2Fe_2O_3 + 3C \rightarrow 4Fe + 3CO_2$ (3) Ihs (1) rhs (1) balancing correct formulae (1) | | (3) | | Questio
Number | | Indicative Content | Mark | |-------------------|-------|---|------| | QWC | *4(d) | A description including some of the following points Property change (other than increased strength) or use of alloy increased hardness decreased malleability increased corrosion resistance shape-memory gold alloy for jewellery stainless steel used for cutlery steel used for construction nitinol (shape-memory alloy) used for spectacle frames / stents idea of any use of metal after alloying | (6) | | | | Structural change pure metal – atoms are all the same size / suitable diagram of pure metal structure atoms arranged in a regular way / lattice alloy – atoms are of different sizes / suitable diagram of alloy structure disrupts arrangement of atoms atoms in pure metal structure can slide over each (when bent) alloy – sliding prevented by different sized atoms | | | Level | 0 | No rewardable content | |-------|-------|--| | 1 | 1 - 2 | a limited description of how one property changes, one use or one statement related to structure eg iron rusts, stainless steel does not; atoms in a pure metal all the same size the answer communicates ideas using simple language and uses limited scientific terminology spelling, punctuation and grammar are used with limited accuracy | | 2 | 3 – 4 | a simple description of how two properties change or two uses or a simple description of why alloys become stronger or a property/use and a statement about structure eg the atoms in a pure metal have a regular arrangement but in alloys there are different sized atoms the answer communicates ideas showing some evidence of clarity and organisation and uses scientific terminology appropriately spelling, punctuation and grammar are used with some accuracy | | 3 | 5 – 6 | a detailed description of why alloys become stronger including at least one change in property of an alloy or use eg the atoms in a pure metal have a regular arrangement but in alloys the different sized atoms stops the atoms sliding over each other and how alloys are more useful such as gold alloys used in jewellery the answer communicates ideas clearly and coherently uses a range of scientific terminology accurately spelling, punctuation and grammar are used with few errors | | Question
Number | Answer | Acceptable answers | Mark | |--------------------|------------------------|--------------------|------| | 5(a) | B tin oxide is reduced | | (1) | | Question
Number | Answer | Acceptable answers | Mark | |--------------------|---|----------------------------|------| | 5 (b)(i) | An explanation linking two of the following | | | | | alloys have different sized atoms | suitable labelled diagrams | | | | {atoms/layers/sheets/particles}
{slide/slip/move} over each
other (easily) in pure metal | reject molecules once | | | | {structure/layers} disrupted (in alloy) | | | | | stop {atoms/layers/sheets/particles} {sliding/slipping/moving} over one another (easily) in | | (2) | | Question | Answer | Acceptable answers | Mark | |----------|--|--------------------|------| | Number | | | | | 5(b)(ii) | all points plotted correctly (1) best fit line across 4 plotted points (1) | +/- 1 small square | (2) | | Question
Number | Answer | Acceptable answers | Mark | |--------------------|---|--------------------|------| | 5 (b) (iii) | Correct value from their graph +/- one small square (%) | | (1) | | Question
Number | | Indicative Content | Mark | |--------------------|-------|---|------| | QWC | *5(c) | An explanation including some of the following points | | | | | gold gold is an unreactive metal/at the bottom of the reactivity series it does not combine with other elements in the Earth's crust so is found as uncombined metal cost of recovery is low | | | | | iron iron is a more reactive metal than gold and less reactive than aluminium/middle of reactivity series found combined with other elements it is extracted by heating with carbon electrolysis can be used but electrolysis is more expensive (than heating with carbon) | | | | | aluminium aluminium is a very reactive metal/near to top of the reactivity series found combined with other elements it is extracted by electrolysis because it is very difficult to reduce electrolysis is a powerful method of reduction use of electricity makes this method expensive | (6) | | Level | | No rewardable content | | | 1 | 1 - 2 | a limited description e.g. a simple justification in terms of reactivity or cost for how one of the metals is extracted OR an indication of how two of the metals are extracted the answer communicates ideas using simple language and uses limited scientific terminology spelling, punctuation and grammar are used with limited accuracy | | | 2 | 3 - 4 | a simple description e.g. a simple indication of how all three metals are extracted OR an indication of how two of the metals are extracted with a justification in terms of reactivity or cost for one the answer communicates ideas showing some evidence of clarity and organisation and uses scientific terminology appropriately spelling, punctuation and grammar are used with some accuracy | | | 3 | 5 - 6 | a detailed description e.g. indicates how all three metals are extracted with a justification for at least two in terms of reactivity and a reference to cost the answer communicates ideas clearly and coherently uses a | | | | | range of scientific terminology accuratelyspelling, punctuation and grammar are used with few errors | |